112 lines
3.4 KiB
C
112 lines
3.4 KiB
C
/*=============================================================================
|
|
|
|
This file is part of FLINT.
|
|
|
|
FLINT is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
FLINT is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with FLINT; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2009 William Hart
|
|
|
|
******************************************************************************/
|
|
|
|
#include <gmp.h>
|
|
#include "flint.h"
|
|
#include "ulong_extras.h"
|
|
|
|
/*
|
|
This function is used by n_is_prime up to 2^64 and *must* therefore
|
|
act as a primality proof up to that limit.
|
|
|
|
Currently it acts as such all the way up to 2^64.
|
|
*/
|
|
int n_is_probabprime(mp_limb_t n)
|
|
{
|
|
mp_limb_t d;
|
|
unsigned int norm;
|
|
mp_limb_t ninv;
|
|
|
|
if (n <= UWORD(1)) return 0;
|
|
if (n == UWORD(2)) return 1;
|
|
if ((n & UWORD(1)) == 0) return 0;
|
|
|
|
if (n_is_perfect_power235(n)) return 0;
|
|
|
|
#if FLINT64
|
|
if (n >= UWORD(10000000000000000)) return n_is_probabprime_BPSW(n);
|
|
#endif
|
|
|
|
d = n - 1;
|
|
count_trailing_zeros(norm, d);
|
|
d >>= norm;
|
|
|
|
#if FLINT64
|
|
if (n < UWORD(1122004669633))
|
|
#else
|
|
if (n < UWORD(2147483648))
|
|
#endif
|
|
{
|
|
double npre;
|
|
if (n < FLINT_ODDPRIME_SMALL_CUTOFF)
|
|
return n_is_oddprime_small(n);
|
|
|
|
if (n < FLINT_PRIMES_TAB_DEFAULT_CUTOFF)
|
|
return n_is_oddprime_binary(n);
|
|
|
|
npre = n_precompute_inverse(n);
|
|
|
|
if (n < UWORD(9080191))
|
|
{
|
|
if (n_is_strong_probabprime_precomp(n, npre, UWORD(31), d)
|
|
&& n_is_strong_probabprime_precomp(n, npre, UWORD(73), d)) return 1;
|
|
else return 0;
|
|
}
|
|
|
|
#if FLINT64
|
|
if (n < UWORD(4759123141))
|
|
{
|
|
#endif
|
|
if (n_is_strong_probabprime_precomp(n, npre, UWORD(2), d)
|
|
&& n_is_strong_probabprime_precomp(n, npre, UWORD(7), d)
|
|
&& n_is_strong_probabprime_precomp(n, npre, UWORD(61), d)) return 1;
|
|
else return 0;
|
|
#if FLINT64
|
|
}
|
|
|
|
if (n_is_strong_probabprime_precomp(n, npre, UWORD(2), d)
|
|
&& n_is_strong_probabprime_precomp(n, npre, UWORD(13), d)
|
|
&& n_is_strong_probabprime_precomp(n, npre, UWORD(23), d)
|
|
&& n_is_strong_probabprime_precomp(n, npre, UWORD(1662803), d))
|
|
if (n != UWORD(46856248255981)) return 1;
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
ninv = n_preinvert_limb(n);
|
|
|
|
if (n_is_strong_probabprime2_preinv(n, ninv, UWORD(2), d)
|
|
&& n_is_strong_probabprime2_preinv(n, ninv, UWORD(3), d)
|
|
&& n_is_strong_probabprime2_preinv(n, ninv, UWORD(7), d)
|
|
&& n_is_strong_probabprime2_preinv(n, ninv, UWORD(61), d)
|
|
&& n_is_strong_probabprime2_preinv(n, ninv, UWORD(24251), d))
|
|
#if FLINT64
|
|
if (n != UWORD(46856248255981))
|
|
#endif
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|