pqc/external/flint-2.4.3/ulong_extras/is_probabprime.c

112 lines
3.4 KiB
C
Raw Normal View History

2014-05-18 22:03:37 +00:00
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2009 William Hart
******************************************************************************/
#include <gmp.h>
#include "flint.h"
#include "ulong_extras.h"
/*
This function is used by n_is_prime up to 2^64 and *must* therefore
act as a primality proof up to that limit.
Currently it acts as such all the way up to 2^64.
*/
int n_is_probabprime(mp_limb_t n)
{
mp_limb_t d;
unsigned int norm;
mp_limb_t ninv;
if (n <= UWORD(1)) return 0;
if (n == UWORD(2)) return 1;
if ((n & UWORD(1)) == 0) return 0;
if (n_is_perfect_power235(n)) return 0;
#if FLINT64
if (n >= UWORD(10000000000000000)) return n_is_probabprime_BPSW(n);
#endif
d = n - 1;
count_trailing_zeros(norm, d);
d >>= norm;
#if FLINT64
if (n < UWORD(1122004669633))
#else
if (n < UWORD(2147483648))
#endif
{
double npre;
if (n < FLINT_ODDPRIME_SMALL_CUTOFF)
return n_is_oddprime_small(n);
if (n < FLINT_PRIMES_TAB_DEFAULT_CUTOFF)
return n_is_oddprime_binary(n);
npre = n_precompute_inverse(n);
if (n < UWORD(9080191))
{
if (n_is_strong_probabprime_precomp(n, npre, UWORD(31), d)
&& n_is_strong_probabprime_precomp(n, npre, UWORD(73), d)) return 1;
else return 0;
}
#if FLINT64
if (n < UWORD(4759123141))
{
#endif
if (n_is_strong_probabprime_precomp(n, npre, UWORD(2), d)
&& n_is_strong_probabprime_precomp(n, npre, UWORD(7), d)
&& n_is_strong_probabprime_precomp(n, npre, UWORD(61), d)) return 1;
else return 0;
#if FLINT64
}
if (n_is_strong_probabprime_precomp(n, npre, UWORD(2), d)
&& n_is_strong_probabprime_precomp(n, npre, UWORD(13), d)
&& n_is_strong_probabprime_precomp(n, npre, UWORD(23), d)
&& n_is_strong_probabprime_precomp(n, npre, UWORD(1662803), d))
if (n != UWORD(46856248255981)) return 1;
return 0;
#endif
}
ninv = n_preinvert_limb(n);
if (n_is_strong_probabprime2_preinv(n, ninv, UWORD(2), d)
&& n_is_strong_probabprime2_preinv(n, ninv, UWORD(3), d)
&& n_is_strong_probabprime2_preinv(n, ninv, UWORD(7), d)
&& n_is_strong_probabprime2_preinv(n, ninv, UWORD(61), d)
&& n_is_strong_probabprime2_preinv(n, ninv, UWORD(24251), d))
#if FLINT64
if (n != UWORD(46856248255981))
#endif
return 1;
return 0;
}