pqc/external/libtompoly-0.04/pb_exptmod.c

187 lines
4.9 KiB
C

/* LibTomPoly, Polynomial Basis Math -- Tom St Denis
*
* LibTomPoly is a public domain library that provides
* polynomial basis arithmetic support. It relies on
* LibTomMath for large integer support.
*
* This library is free for all purposes without any
* express guarantee that it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://poly.libtomcrypt.org
*/
#include <tompoly.h>
#ifdef MP_LOW_MEM
#define TAB_SIZE 32
#else
#define TAB_SIZE 256
#endif
int pb_exptmod (pb_poly * G, mp_int * X, pb_poly * P, pb_poly * Y)
{
pb_poly M[TAB_SIZE], res;
mp_digit buf;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
/* find window size */
x = mp_count_bits (X);
if (x <= 7) {
winsize = 2;
} else if (x <= 36) {
winsize = 3;
} else if (x <= 140) {
winsize = 4;
} else if (x <= 450) {
winsize = 5;
} else if (x <= 1303) {
winsize = 6;
} else if (x <= 3529) {
winsize = 7;
} else {
winsize = 8;
}
#ifdef MP_LOW_MEM
if (winsize > 5) {
winsize = 5;
}
#endif
/* init M array */
/* init first cell */
if ((err = pb_init(&M[1], &(Y->characteristic))) != MP_OKAY) {
return err;
}
/* now init the second half of the array */
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
if ((err = pb_init(&M[x], &(Y->characteristic))) != MP_OKAY) {
for (y = 1<<(winsize-1); y < x; y++) {
pb_clear (&M[y]);
}
pb_clear(&M[1]);
return err;
}
}
/* create M table
*
* The M table contains powers of the base,
* e.g. M[x] = G**x mod P
*
* The first half of the table is not
* computed though accept for M[0] and M[1]
*/
if (X->sign == MP_ZPOS) {
if ((err = pb_mod (G, P, &M[1])) != MP_OKAY) { goto __M; }
} else {
if ((err = pb_invmod(G, P, &M[1])) != MP_OKAY) { goto __M; }
}
/* compute the value at M[1<<(winsize-1)] by squaring
* M[1] (winsize-1) times
*/
if ((err = pb_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { goto __M; }
for (x = 0; x < (winsize - 1); x++) {
if ((err = pb_mulmod (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)],
P, &M[1 << (winsize - 1)])) != MP_OKAY) { goto __M; }
}
/* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
* for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
*/
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
if ((err = pb_mulmod (&M[x - 1], &M[1], P, &M[x])) != MP_OKAY) { goto __M; }
}
/* setup result */
if ((err = pb_init (&res, &(Y->characteristic))) != MP_OKAY) { goto __M; }
mp_set (&(res.terms[0]), 1); res.used = 1;
/* set initial mode and bit cnt */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = X->used - 1;
bitcpy = 0;
bitbuf = 0;
for (;;) {
/* grab next digit as required */
if (--bitcnt == 0) {
/* if digidx == -1 we are out of digits */
if (digidx == -1) {
break;
}
/* read next digit and reset the bitcnt */
buf = X->dp[digidx--];
bitcnt = (int) DIGIT_BIT;
}
/* grab the next msb from the exponent */
y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
buf <<= (mp_digit)1;
/* if the bit is zero and mode == 0 then we ignore it
* These represent the leading zero bits before the first 1 bit
* in the exponent. Technically this opt is not required but it
* does lower the # of trivial squaring/reductions used
*/
if (mode == 0 && y == 0) {
continue;
}
/* if the bit is zero and mode == 1 then we square */
if (mode == 1 && y == 0) {
if ((err = pb_mulmod (&res, &res, P, &res)) != MP_OKAY) { goto __RES; }
continue;
}
/* else we add it to the window */
bitbuf |= (y << (winsize - ++bitcpy));
mode = 2;
if (bitcpy == winsize) {
/* ok window is filled so square as required and multiply */
/* square first */
for (x = 0; x < winsize; x++) {
if ((err = pb_mulmod (&res, &res, P, &res)) != MP_OKAY) { goto __RES; }
}
/* then multiply */
if ((err = pb_mulmod (&res, &M[bitbuf], P, &res)) != MP_OKAY) { goto __RES; }
/* empty window and reset */
bitcpy = 0;
bitbuf = 0;
mode = 1;
}
}
/* if bits remain then square/multiply */
if (mode == 2 && bitcpy > 0) {
/* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) {
if ((err = pb_mulmod (&res, &res, P, &res)) != MP_OKAY) { goto __RES; }
bitbuf <<= 1;
if ((bitbuf & (1 << winsize)) != 0) {
/* then multiply */
if ((err = pb_mulmod (&res, &M[1], P, &res)) != MP_OKAY) { goto __RES; }
}
}
}
pb_exch (&res, Y);
err = MP_OKAY;
__RES:pb_clear (&res);
__M:
pb_clear(&M[1]);
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
pb_clear (&M[x]);
}
return err;
}