pqc/external/flint-2.4.3/fmpz_vec/doc/fmpz_vec.txt
2014-05-24 23:16:06 +02:00

439 lines
17 KiB
Plaintext

/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2010 William Hart
******************************************************************************/
*******************************************************************************
Memory management
*******************************************************************************
fmpz * _fmpz_vec_init(slong len)
Returns an initialised vector of \code{fmpz}'s of given length.
void _fmpz_vec_clear(fmpz * vec, slong len)
Clears the entries of \code{(vec, len)} and frees the space allocated
for \code{vec}.
*******************************************************************************
Randomisation
*******************************************************************************
void _fmpz_vec_randtest(fmpz * f, flint_rand_t state,
slong len, mp_bitcnt_t bits)
Sets the entries of a vector of the given length to random integers with
up to the given number of bits per entry.
void _fmpz_vec_randtest_unsigned(fmpz * f, flint_rand_t state,
slong len, mp_bitcnt_t bits)
Sets the entries of a vector of the given length to random unsigned
integers with up to the given number of bits per entry.
*******************************************************************************
Bit sizes and norms
*******************************************************************************
slong _fmpz_vec_max_bits(const fmpz * vec, slong len)
If $b$ is the maximum number of bits of the absolute value of any
coefficient of \code{vec}, then if any coefficient of \code{vec} is
negative, $-b$ is returned, else $b$ is returned.
slong _fmpz_vec_max_bits_ref(const fmpz * vec, slong len)
If $b$ is the maximum number of bits of the absolute value of any
coefficient of \code{vec}, then if any coefficient of \code{vec} is
negative, $-b$ is returned, else $b$ is returned.
This is a slower reference implementation of \code{_fmpz_vec_max_bits}.
ulong _fmpz_vec_max_limbs(const fmpz * vec, slong len)
Returns the maximum number of limbs needed to store the absolute value
of any entry in \code{(vec, len)}. If all entries are zero, returns
zero.
void _fmpz_vec_height(fmpz_t height, const fmpz * vec, slong len)
Computes the height of \code{(vec, len)}, defined as the largest of the
absolute values the coefficients. Equivalently, this gives the infinity
norm of the vector. If \code{len} is zero, the height is $0$.
slong _fmpz_vec_height_index(const fmpz * vec, slong len)
Returns the index of an entry of maximum absolute value in the vector.
The the length must be at least 1.
*******************************************************************************
Input and output
*******************************************************************************
int _fmpz_vec_fread(FILE * file, fmpz ** vec, slong * len)
Reads a vector from the stream \code{file} and stores it at
\code{*vec}. The format is the same as the output format of
\code{_fmpz_vec_fprint()}, followed by either any character
or the end of the file.
The interpretation of the various input arguments depends on whether
or not \code{*vec} is \code{NULL}:
If \code{*vec == NULL}, the value of \code{*len} on input is ignored.
Once the length has been read from \code{file}, \code{*len} is set
to that value and a vector of this length is allocated at \code{*vec}.
Finally, \code{*len} coefficients are read from the input stream. In
case of a file or parsing error, clears the vector and sets \code{*vec}
and \code{*len} to \code{NULL} and \code{0}, respectively.
Otherwise, if \code{*vec != NULL}, it is assumed that \code{(*vec, *len)}
is a properly initialised vector. If the length on the input stream
does not match \code{*len}, a parsing error is raised. Attempts to read
the right number of coefficients from the input stream. In case of a
file or parsing error, leaves the vector \code{(*vec, *len)} in its
current state.
In case of success, returns a positive value. In case of failure,
returns a non-positive value.
int _fmpz_vec_read(fmpz ** vec, slong * len)
Reads a vector from \code{stdin} and stores it at \code{*vec}.
For further details, see \code{_fmpz_vec_fread()}.
int _fmpz_vec_fprint(FILE * file, const fmpz * vec, slong len)
Prints the vector of given length to the stream \code{file}. The
format is the length followed by two spaces, then a space separated
list of coefficients. If the length is zero, only $0$ is printed.
In case of success, returns a positive value. In case of failure,
returns a non-positive value.
int _fmpz_vec_print(const fmpz * vec, slong len)
Prints the vector of given length to \code{stdout}.
For further details, see \code{_fmpz_vec_fprint()}.
*******************************************************************************
Conversions
*******************************************************************************
void _fmpz_vec_get_nmod_vec(mp_ptr res,
const fmpz * poly, slong len, nmod_t mod)
Reduce the coefficients of \code{(poly, len)} modulo the given
modulus and set \code{(res, len)} to the result.
void _fmpz_vec_set_nmod_vec(fmpz * res,
mp_srcptr poly, slong len, nmod_t mod)
Set the coefficients of \code{(res, len)} to the symmetric modulus
of the coefficients of \code{(poly, len)}, i.e. convert the given
coefficients modulo the given modulus $n$ to their signed integer
representatives in the range $[-n/2, n/2)$.
slong _fmpz_vec_get_fft(mp_limb_t ** coeffs_f,
const fmpz * coeffs_m, slong l, slong length)
Convert the vector of coeffs \code{coeffs_m} to an fft vector
\code{coeffs_f} of the given \code{length} with \code{l} limbs per
coefficient with an additional limb for overflow.
void _fmpz_vec_set_fft(fmpz * coeffs_m, slong length,
const mp_ptr * coeffs_f, slong limbs, slong sign)
Convert an fft vector \code{coeffs_f} of the given \code{length}
to a vector of \code{fmpz}'s. Each is assumed to be the given
number of limbs in length with an additional limb for overflow. If the
output coefficients are to be signed then set \code{sign},
otherwise clear it.
*******************************************************************************
Assignment and basic manipulation
*******************************************************************************
void _fmpz_vec_set(fmpz * vec1, const fmpz * vec2, slong len2)
Makes a copy of \code{(vec2, len2)} into \code{vec1}.
void _fmpz_vec_swap(fmpz * vec1, fmpz * vec2, slong len2)
Swaps the integers in \code{(vec1, len2)} and \code{(vec2, len2)}.
void _fmpz_vec_zero(fmpz * vec, slong len)
Zeros the entries of \code{(vec, len)}.
void _fmpz_vec_neg(fmpz * vec1, const fmpz * vec2, slong len2)
Negates \code{(vec2, len2)} and places it into \code{vec1}.
*******************************************************************************
Comparison
*******************************************************************************
int _fmpz_vec_equal(const fmpz * vec1, const fmpz * vec2, slong len)
Compares two vectors of the given length and returns $1$ if they are
equal, otherwise returns $0$.
int _fmpz_vec_is_zero(const fmpz * vec, slong len)
Returns $1$ if \code{(vec, len)} is zero, and $0$ otherwise.
*******************************************************************************
Sorting
*******************************************************************************
void _fmpz_vec_sort(fmpz * vec, slong len)
Sorts the coefficients of \code{vec} in ascending order.
*******************************************************************************
Addition and subtraction
*******************************************************************************
void _fmpz_vec_add(fmpz * res, const fmpz * vec1,
const fmpz * vec2, slong len2)
Sets \code{(res, len2)} to the sum of \code{(vec1, len2)}
and \code{(vec2, len2)}.
void _fmpz_vec_sub(fmpz * res, const fmpz * vec1,
const fmpz * vec2, slong len2)
Sets \code{(res, len2)} to \code{(vec1, len2)} minus \code{(vec2, len2)}.
*******************************************************************************
Scalar multiplication and division
*******************************************************************************
void _fmpz_vec_scalar_mul_fmpz(fmpz * vec1,
const fmpz * vec2, slong len2, const fmpz_t x)
Sets \code{(vec1, len2)} to \code{(vec2, len2)} multiplied by $c$,
where $c$ is an \code{fmpz_t}.
id _fmpz_vec_scalar_mul_si(fmpz * vec1, const fmpz * vec2, slong len2, slong c)
Sets \code{(vec1, len2)} to \code{(vec2, len2)} multiplied by $c$,
where $c$ is a \code{slong}.
void _fmpz_vec_scalar_mul_ui(fmpz * vec1,
const fmpz * vec2, slong len2, ulong c)
Sets \code{(vec1, len2)} to \code{(vec2, len2)} multiplied by $c$,
where $c$ is an \code{ulong}.
void _fmpz_vec_scalar_mul_2exp(fmpz * vec1,
const fmpz * vec2, slong len2, ulong exp)
Sets \code{(vec1, len2)} to \code{(vec2, len2)} multiplied by \code{2^exp}.
void _fmpz_vec_scalar_divexact_fmpz(fmpz * vec1,
const fmpz * vec2, slong len2, const fmpz_t x)
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $x$, where the
division is assumed to be exact for every entry in \code{vec2}.
void _fmpz_vec_scalar_divexact_si(fmpz * vec1,
const fmpz * vec2, slong len2, slong c)
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $x$, where the
division is assumed to be exact for every entry in \code{vec2}.
void _fmpz_vec_scalar_divexact_ui(fmpz * vec1,
const fmpz * vec2, ulong len2, ulong c)
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $x$, where the
division is assumed to be exact for every entry in \code{vec2}.
void _fmpz_vec_scalar_fdiv_q_fmpz(fmpz * vec1,
const fmpz * vec2, slong len2, const fmpz_t c)
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding
down towards minus infinity whenever the division is not exact.
void _fmpz_vec_scalar_fdiv_q_si(fmpz * vec1,
const fmpz * vec2, slong len2, slong c)
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding
down towards minus infinity whenever the division is not exact.
void _fmpz_vec_scalar_fdiv_q_ui(fmpz * vec1,
const fmpz * vec2, slong len2, ulong c)
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding
down towards minus infinity whenever the division is not exact.
void _fmpz_vec_scalar_fdiv_q_2exp(fmpz * vec1,
const fmpz * vec2, slong len2, ulong exp)
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by \code{2^exp},
rounding down towards minus infinity whenever the division is not exact.
void _fmpz_vec_scalar_fdiv_r_2exp(fmpz * vec1,
const fmpz * vec2, slong len2, ulong exp)
Sets \code{(vec1, len2)} to the remainder of \code{(vec2, len2)}
divided by \code{2^exp}, rounding down the quotient towards minus
infinity whenever the division is not exact.
void _fmpz_vec_scalar_tdiv_q_fmpz(fmpz * vec1,
const fmpz * vec2, slong len2, const fmpz_t c)
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding
towards zero whenever the division is not exact.
void _fmpz_vec_scalar_tdiv_q_si(fmpz * vec1,
const fmpz * vec2, slong len2, slong c)
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding
towards zero whenever the division is not exact.
void _fmpz_vec_scalar_tdiv_q_ui(fmpz * vec1,
const fmpz * vec2, slong len2, ulong c)
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding
towards zero whenever the division is not exact.
void _fmpz_vec_scalar_tdiv_q_2exp(fmpz * vec1,
const fmpz * vec2, slong len2, ulong exp)
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by \code{2^exp},
rounding down towards zero whenever the division is not exact.
void _fmpz_vec_scalar_addmul_fmpz(fmpz * vec1,
const fmpz * vec2, slong len2, const fmpz_t c)
Adds \code{(vec2, len2)} times $c$ to \code{(vec1, len2)}, where $c$ is a
\code{fmpz_t}.
void _fmpz_vec_scalar_addmul_si(fmpz * vec1,
const fmpz * vec2, slong len2, slong c)
Adds \code{(vec2, len2)} times $c$ to \code{(vec1, len2)}, where $c$ is a
\code{slong}.
void _fmpz_vec_scalar_addmul_si_2exp(fmpz * vec1,
const fmpz * vec2, slong len2, slong c, ulong exp)
Adds \code{(vec2, len2)} times \code{c * 2^exp} to \code{(vec1, len2)},
where $c$ is a \code{slong}.
void _fmpz_vec_scalar_submul_fmpz(fmpz * vec1,
const fmpz * vec2, slong len2, const fmpz_t x)
Subtracts \code{(vec2, len2)} times $c$ from \code{(vec1, len2)},
where $c$ is a \code{fmpz_t}.
void _fmpz_vec_scalar_submul_si(fmpz * vec1,
const fmpz * vec2, slong len2, slong c)
Subtracts \code{(vec2, len2)} times $c$ from \code{(vec1, len2)},
where $c$ is a \code{slong}.
void _fmpz_vec_scalar_submul_si_2exp(fmpz * vec1,
const fmpz * vec2, slong len2, slong c, ulong e)
Subtracts \code{(vec2, len2)} times $c \times 2^e$
from \code{(vec1, len2)}, where $c$ is a \code{slong}.
*******************************************************************************
Sums and products
*******************************************************************************
void _fmpz_vec_sum(fmpz_t res, const fmpz * vec, slong len)
Sets \code{res} to the sum of the entries in \code{(vec, len)}.
Aliasing of \code{res} with the entries in \code{vec} is not permitted.
void _fmpz_vec_prod(fmpz_t res, const fmpz * vec, slong len)
Sets \code{res} to the product of the entries in \code{(vec, len)}.
Aliasing of \code{res} with the entries in \code{vec} is not permitted.
Uses binary splitting.
*******************************************************************************
Reduction mod $p$
*******************************************************************************
void _fmpz_vec_scalar_mod_fmpz(fmpz *res,
const fmpz *vec, slong len, const fmpz_t p)
Reduces all entries in \code{(vec, len)} modulo $p > 0$.
void _fmpz_vec_scalar_smod_fmpz(fmpz *res,
const fmpz *vec, slong len, const fmpz_t p)
Reduces all entries in \code{(vec, len)} modulo $p > 0$, choosing
the unique representative in $(-p/2, p/2]$.
*******************************************************************************
Gaussian content
*******************************************************************************
void _fmpz_vec_content(fmpz_t res, const fmpz * vec, slong len)
Sets \code{res} to the non-negative content of the entries in \code{vec}.
The content of a zero vector, including the case when the length is zero,
is defined to be zero.
void _fmpz_vec_lcm(fmpz_t res, const fmpz * vec, slong len)
Sets \code{res} to the nonnegative least common multiple of the entries
in \code{vec}. The least common multiple is zero if any entry in
the vector is zero. The least common multiple of a length zero vector is
defined to be one.