439 lines
17 KiB
Plaintext
439 lines
17 KiB
Plaintext
|
/*=============================================================================
|
||
|
|
||
|
This file is part of FLINT.
|
||
|
|
||
|
FLINT is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
FLINT is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with FLINT; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
=============================================================================*/
|
||
|
/******************************************************************************
|
||
|
|
||
|
Copyright (C) 2010 William Hart
|
||
|
|
||
|
******************************************************************************/
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Memory management
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
fmpz * _fmpz_vec_init(slong len)
|
||
|
|
||
|
Returns an initialised vector of \code{fmpz}'s of given length.
|
||
|
|
||
|
void _fmpz_vec_clear(fmpz * vec, slong len)
|
||
|
|
||
|
Clears the entries of \code{(vec, len)} and frees the space allocated
|
||
|
for \code{vec}.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Randomisation
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
void _fmpz_vec_randtest(fmpz * f, flint_rand_t state,
|
||
|
slong len, mp_bitcnt_t bits)
|
||
|
|
||
|
Sets the entries of a vector of the given length to random integers with
|
||
|
up to the given number of bits per entry.
|
||
|
|
||
|
void _fmpz_vec_randtest_unsigned(fmpz * f, flint_rand_t state,
|
||
|
slong len, mp_bitcnt_t bits)
|
||
|
|
||
|
Sets the entries of a vector of the given length to random unsigned
|
||
|
integers with up to the given number of bits per entry.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Bit sizes and norms
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
slong _fmpz_vec_max_bits(const fmpz * vec, slong len)
|
||
|
|
||
|
If $b$ is the maximum number of bits of the absolute value of any
|
||
|
coefficient of \code{vec}, then if any coefficient of \code{vec} is
|
||
|
negative, $-b$ is returned, else $b$ is returned.
|
||
|
|
||
|
slong _fmpz_vec_max_bits_ref(const fmpz * vec, slong len)
|
||
|
|
||
|
If $b$ is the maximum number of bits of the absolute value of any
|
||
|
coefficient of \code{vec}, then if any coefficient of \code{vec} is
|
||
|
negative, $-b$ is returned, else $b$ is returned.
|
||
|
This is a slower reference implementation of \code{_fmpz_vec_max_bits}.
|
||
|
|
||
|
ulong _fmpz_vec_max_limbs(const fmpz * vec, slong len)
|
||
|
|
||
|
Returns the maximum number of limbs needed to store the absolute value
|
||
|
of any entry in \code{(vec, len)}. If all entries are zero, returns
|
||
|
zero.
|
||
|
|
||
|
void _fmpz_vec_height(fmpz_t height, const fmpz * vec, slong len)
|
||
|
|
||
|
Computes the height of \code{(vec, len)}, defined as the largest of the
|
||
|
absolute values the coefficients. Equivalently, this gives the infinity
|
||
|
norm of the vector. If \code{len} is zero, the height is $0$.
|
||
|
|
||
|
slong _fmpz_vec_height_index(const fmpz * vec, slong len)
|
||
|
|
||
|
Returns the index of an entry of maximum absolute value in the vector.
|
||
|
The the length must be at least 1.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Input and output
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
int _fmpz_vec_fread(FILE * file, fmpz ** vec, slong * len)
|
||
|
|
||
|
Reads a vector from the stream \code{file} and stores it at
|
||
|
\code{*vec}. The format is the same as the output format of
|
||
|
\code{_fmpz_vec_fprint()}, followed by either any character
|
||
|
or the end of the file.
|
||
|
|
||
|
The interpretation of the various input arguments depends on whether
|
||
|
or not \code{*vec} is \code{NULL}:
|
||
|
|
||
|
If \code{*vec == NULL}, the value of \code{*len} on input is ignored.
|
||
|
Once the length has been read from \code{file}, \code{*len} is set
|
||
|
to that value and a vector of this length is allocated at \code{*vec}.
|
||
|
Finally, \code{*len} coefficients are read from the input stream. In
|
||
|
case of a file or parsing error, clears the vector and sets \code{*vec}
|
||
|
and \code{*len} to \code{NULL} and \code{0}, respectively.
|
||
|
|
||
|
Otherwise, if \code{*vec != NULL}, it is assumed that \code{(*vec, *len)}
|
||
|
is a properly initialised vector. If the length on the input stream
|
||
|
does not match \code{*len}, a parsing error is raised. Attempts to read
|
||
|
the right number of coefficients from the input stream. In case of a
|
||
|
file or parsing error, leaves the vector \code{(*vec, *len)} in its
|
||
|
current state.
|
||
|
|
||
|
In case of success, returns a positive value. In case of failure,
|
||
|
returns a non-positive value.
|
||
|
|
||
|
int _fmpz_vec_read(fmpz ** vec, slong * len)
|
||
|
|
||
|
Reads a vector from \code{stdin} and stores it at \code{*vec}.
|
||
|
|
||
|
For further details, see \code{_fmpz_vec_fread()}.
|
||
|
|
||
|
int _fmpz_vec_fprint(FILE * file, const fmpz * vec, slong len)
|
||
|
|
||
|
Prints the vector of given length to the stream \code{file}. The
|
||
|
format is the length followed by two spaces, then a space separated
|
||
|
list of coefficients. If the length is zero, only $0$ is printed.
|
||
|
|
||
|
In case of success, returns a positive value. In case of failure,
|
||
|
returns a non-positive value.
|
||
|
|
||
|
int _fmpz_vec_print(const fmpz * vec, slong len)
|
||
|
|
||
|
Prints the vector of given length to \code{stdout}.
|
||
|
|
||
|
For further details, see \code{_fmpz_vec_fprint()}.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Conversions
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
void _fmpz_vec_get_nmod_vec(mp_ptr res,
|
||
|
const fmpz * poly, slong len, nmod_t mod)
|
||
|
|
||
|
Reduce the coefficients of \code{(poly, len)} modulo the given
|
||
|
modulus and set \code{(res, len)} to the result.
|
||
|
|
||
|
void _fmpz_vec_set_nmod_vec(fmpz * res,
|
||
|
mp_srcptr poly, slong len, nmod_t mod)
|
||
|
|
||
|
Set the coefficients of \code{(res, len)} to the symmetric modulus
|
||
|
of the coefficients of \code{(poly, len)}, i.e. convert the given
|
||
|
coefficients modulo the given modulus $n$ to their signed integer
|
||
|
representatives in the range $[-n/2, n/2)$.
|
||
|
|
||
|
slong _fmpz_vec_get_fft(mp_limb_t ** coeffs_f,
|
||
|
const fmpz * coeffs_m, slong l, slong length)
|
||
|
|
||
|
Convert the vector of coeffs \code{coeffs_m} to an fft vector
|
||
|
\code{coeffs_f} of the given \code{length} with \code{l} limbs per
|
||
|
coefficient with an additional limb for overflow.
|
||
|
|
||
|
void _fmpz_vec_set_fft(fmpz * coeffs_m, slong length,
|
||
|
const mp_ptr * coeffs_f, slong limbs, slong sign)
|
||
|
|
||
|
Convert an fft vector \code{coeffs_f} of the given \code{length}
|
||
|
to a vector of \code{fmpz}'s. Each is assumed to be the given
|
||
|
number of limbs in length with an additional limb for overflow. If the
|
||
|
output coefficients are to be signed then set \code{sign},
|
||
|
otherwise clear it.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Assignment and basic manipulation
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
void _fmpz_vec_set(fmpz * vec1, const fmpz * vec2, slong len2)
|
||
|
|
||
|
Makes a copy of \code{(vec2, len2)} into \code{vec1}.
|
||
|
|
||
|
void _fmpz_vec_swap(fmpz * vec1, fmpz * vec2, slong len2)
|
||
|
|
||
|
Swaps the integers in \code{(vec1, len2)} and \code{(vec2, len2)}.
|
||
|
|
||
|
void _fmpz_vec_zero(fmpz * vec, slong len)
|
||
|
|
||
|
Zeros the entries of \code{(vec, len)}.
|
||
|
|
||
|
void _fmpz_vec_neg(fmpz * vec1, const fmpz * vec2, slong len2)
|
||
|
|
||
|
Negates \code{(vec2, len2)} and places it into \code{vec1}.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Comparison
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
int _fmpz_vec_equal(const fmpz * vec1, const fmpz * vec2, slong len)
|
||
|
|
||
|
Compares two vectors of the given length and returns $1$ if they are
|
||
|
equal, otherwise returns $0$.
|
||
|
|
||
|
int _fmpz_vec_is_zero(const fmpz * vec, slong len)
|
||
|
|
||
|
Returns $1$ if \code{(vec, len)} is zero, and $0$ otherwise.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Sorting
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
void _fmpz_vec_sort(fmpz * vec, slong len)
|
||
|
|
||
|
Sorts the coefficients of \code{vec} in ascending order.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Addition and subtraction
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
void _fmpz_vec_add(fmpz * res, const fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2)
|
||
|
|
||
|
Sets \code{(res, len2)} to the sum of \code{(vec1, len2)}
|
||
|
and \code{(vec2, len2)}.
|
||
|
|
||
|
void _fmpz_vec_sub(fmpz * res, const fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2)
|
||
|
|
||
|
Sets \code{(res, len2)} to \code{(vec1, len2)} minus \code{(vec2, len2)}.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Scalar multiplication and division
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
void _fmpz_vec_scalar_mul_fmpz(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, const fmpz_t x)
|
||
|
|
||
|
Sets \code{(vec1, len2)} to \code{(vec2, len2)} multiplied by $c$,
|
||
|
where $c$ is an \code{fmpz_t}.
|
||
|
|
||
|
id _fmpz_vec_scalar_mul_si(fmpz * vec1, const fmpz * vec2, slong len2, slong c)
|
||
|
|
||
|
Sets \code{(vec1, len2)} to \code{(vec2, len2)} multiplied by $c$,
|
||
|
where $c$ is a \code{slong}.
|
||
|
|
||
|
void _fmpz_vec_scalar_mul_ui(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, ulong c)
|
||
|
|
||
|
Sets \code{(vec1, len2)} to \code{(vec2, len2)} multiplied by $c$,
|
||
|
where $c$ is an \code{ulong}.
|
||
|
|
||
|
void _fmpz_vec_scalar_mul_2exp(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, ulong exp)
|
||
|
|
||
|
Sets \code{(vec1, len2)} to \code{(vec2, len2)} multiplied by \code{2^exp}.
|
||
|
|
||
|
void _fmpz_vec_scalar_divexact_fmpz(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, const fmpz_t x)
|
||
|
|
||
|
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $x$, where the
|
||
|
division is assumed to be exact for every entry in \code{vec2}.
|
||
|
|
||
|
void _fmpz_vec_scalar_divexact_si(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, slong c)
|
||
|
|
||
|
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $x$, where the
|
||
|
division is assumed to be exact for every entry in \code{vec2}.
|
||
|
|
||
|
void _fmpz_vec_scalar_divexact_ui(fmpz * vec1,
|
||
|
const fmpz * vec2, ulong len2, ulong c)
|
||
|
|
||
|
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $x$, where the
|
||
|
division is assumed to be exact for every entry in \code{vec2}.
|
||
|
|
||
|
void _fmpz_vec_scalar_fdiv_q_fmpz(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, const fmpz_t c)
|
||
|
|
||
|
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding
|
||
|
down towards minus infinity whenever the division is not exact.
|
||
|
|
||
|
void _fmpz_vec_scalar_fdiv_q_si(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, slong c)
|
||
|
|
||
|
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding
|
||
|
down towards minus infinity whenever the division is not exact.
|
||
|
|
||
|
void _fmpz_vec_scalar_fdiv_q_ui(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, ulong c)
|
||
|
|
||
|
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding
|
||
|
down towards minus infinity whenever the division is not exact.
|
||
|
|
||
|
void _fmpz_vec_scalar_fdiv_q_2exp(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, ulong exp)
|
||
|
|
||
|
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by \code{2^exp},
|
||
|
rounding down towards minus infinity whenever the division is not exact.
|
||
|
|
||
|
void _fmpz_vec_scalar_fdiv_r_2exp(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, ulong exp)
|
||
|
|
||
|
Sets \code{(vec1, len2)} to the remainder of \code{(vec2, len2)}
|
||
|
divided by \code{2^exp}, rounding down the quotient towards minus
|
||
|
infinity whenever the division is not exact.
|
||
|
|
||
|
void _fmpz_vec_scalar_tdiv_q_fmpz(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, const fmpz_t c)
|
||
|
|
||
|
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding
|
||
|
towards zero whenever the division is not exact.
|
||
|
|
||
|
void _fmpz_vec_scalar_tdiv_q_si(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, slong c)
|
||
|
|
||
|
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding
|
||
|
towards zero whenever the division is not exact.
|
||
|
|
||
|
void _fmpz_vec_scalar_tdiv_q_ui(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, ulong c)
|
||
|
|
||
|
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding
|
||
|
towards zero whenever the division is not exact.
|
||
|
|
||
|
void _fmpz_vec_scalar_tdiv_q_2exp(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, ulong exp)
|
||
|
|
||
|
Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by \code{2^exp},
|
||
|
rounding down towards zero whenever the division is not exact.
|
||
|
|
||
|
void _fmpz_vec_scalar_addmul_fmpz(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, const fmpz_t c)
|
||
|
|
||
|
Adds \code{(vec2, len2)} times $c$ to \code{(vec1, len2)}, where $c$ is a
|
||
|
\code{fmpz_t}.
|
||
|
|
||
|
void _fmpz_vec_scalar_addmul_si(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, slong c)
|
||
|
|
||
|
Adds \code{(vec2, len2)} times $c$ to \code{(vec1, len2)}, where $c$ is a
|
||
|
\code{slong}.
|
||
|
|
||
|
void _fmpz_vec_scalar_addmul_si_2exp(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, slong c, ulong exp)
|
||
|
|
||
|
Adds \code{(vec2, len2)} times \code{c * 2^exp} to \code{(vec1, len2)},
|
||
|
where $c$ is a \code{slong}.
|
||
|
|
||
|
void _fmpz_vec_scalar_submul_fmpz(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, const fmpz_t x)
|
||
|
|
||
|
Subtracts \code{(vec2, len2)} times $c$ from \code{(vec1, len2)},
|
||
|
where $c$ is a \code{fmpz_t}.
|
||
|
|
||
|
void _fmpz_vec_scalar_submul_si(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, slong c)
|
||
|
|
||
|
Subtracts \code{(vec2, len2)} times $c$ from \code{(vec1, len2)},
|
||
|
where $c$ is a \code{slong}.
|
||
|
|
||
|
void _fmpz_vec_scalar_submul_si_2exp(fmpz * vec1,
|
||
|
const fmpz * vec2, slong len2, slong c, ulong e)
|
||
|
|
||
|
Subtracts \code{(vec2, len2)} times $c \times 2^e$
|
||
|
from \code{(vec1, len2)}, where $c$ is a \code{slong}.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Sums and products
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
void _fmpz_vec_sum(fmpz_t res, const fmpz * vec, slong len)
|
||
|
|
||
|
Sets \code{res} to the sum of the entries in \code{(vec, len)}.
|
||
|
Aliasing of \code{res} with the entries in \code{vec} is not permitted.
|
||
|
|
||
|
void _fmpz_vec_prod(fmpz_t res, const fmpz * vec, slong len)
|
||
|
|
||
|
Sets \code{res} to the product of the entries in \code{(vec, len)}.
|
||
|
Aliasing of \code{res} with the entries in \code{vec} is not permitted.
|
||
|
Uses binary splitting.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Reduction mod $p$
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
void _fmpz_vec_scalar_mod_fmpz(fmpz *res,
|
||
|
const fmpz *vec, slong len, const fmpz_t p)
|
||
|
|
||
|
Reduces all entries in \code{(vec, len)} modulo $p > 0$.
|
||
|
|
||
|
void _fmpz_vec_scalar_smod_fmpz(fmpz *res,
|
||
|
const fmpz *vec, slong len, const fmpz_t p)
|
||
|
|
||
|
Reduces all entries in \code{(vec, len)} modulo $p > 0$, choosing
|
||
|
the unique representative in $(-p/2, p/2]$.
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
Gaussian content
|
||
|
|
||
|
*******************************************************************************
|
||
|
|
||
|
void _fmpz_vec_content(fmpz_t res, const fmpz * vec, slong len)
|
||
|
|
||
|
Sets \code{res} to the non-negative content of the entries in \code{vec}.
|
||
|
The content of a zero vector, including the case when the length is zero,
|
||
|
is defined to be zero.
|
||
|
|
||
|
void _fmpz_vec_lcm(fmpz_t res, const fmpz * vec, slong len)
|
||
|
|
||
|
Sets \code{res} to the nonnegative least common multiple of the entries
|
||
|
in \code{vec}. The least common multiple is zero if any entry in
|
||
|
the vector is zero. The least common multiple of a length zero vector is
|
||
|
defined to be one.
|
||
|
|