pqc/src/ascii_poly.c

459 行
10 KiB
C

/*
* Copyright (C) 2014 FH Bielefeld
*
* This file is part of a FH Bielefeld project.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
/* TODO: clean up some iterators */
/* TODO: ascii_to_bin_poly() should accept a string, not a c_str */
/**
* @file ascii_poly.c
* This file allows to convert between ascii strings
* and polynomials.
* @brief asci->poly and poly->ascii
*/
#include "ascii_poly.h"
#include "common.h"
#include "context.h"
#include "mem.h"
#include "ntru_string.h"
#include "poly.h"
#include <glib.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <fmpz_poly.h>
#include <fmpz.h>
/**
* Convert an integer to it's binary representation
* as a string and return it.
*
* As in: 90 => "10110101"
*
* @param value the integer to convert
* @return the binary representation as a newly allocated string
*/
static char *
get_int_to_bin_str(uint8_t value);
/**
* Converts a binary representation of multiple concatenated
* integers to the corresponding array of ascii chars, which
* is NULL-terminated.
*
* It reads in 8bit chunks, as in:
*
* 10110101|00111100|01011001 => 90|60|89 => "Z<Y"
*
* Chunks that are 00000000 are stripped from the result.
*
* @param binary_rep the binary representation of multiple
* integers concatenated
* @return string of corresponding ascii-chars,
* newly allocated
*/
static string *
get_bin_arr_to_ascii(const char *binary_rep);
/*------------------------------------------------------------------------*/
static char *
get_int_to_bin_str(uint8_t value)
{
int i;
const size_t bin_string_size = ASCII_BITS + 1;
char *bin_string = ntru_malloc(sizeof(*bin_string) *
(bin_string_size)); /* account for trailing null-byte */
/* terminate properly */
bin_string[bin_string_size - 1] = '\0';
for (i = ASCII_BITS - 1; i >= 0; --i, value >>= 1)
bin_string[i] = (value & 1) + '0';
return bin_string;
}
/*------------------------------------------------------------------------*/
static string *
get_bin_arr_to_ascii(const char *binary_rep)
{
size_t int_arr_size = 0;
uint8_t *int_arr = NULL;
uint32_t i = 0;
char *int_string = NULL;
string *result = ntru_malloc(sizeof(*result));
if (!binary_rep || !*binary_rep)
return NULL;
int_arr_size = strlen(binary_rep) / ASCII_BITS + 1;
int_arr = ntru_malloc(sizeof(*int_arr) * int_arr_size);
while (*binary_rep) {
int_arr[i] = 0;
/* convert one binary integer to real integer */
for (uint32_t j = 0; j < ASCII_BITS && *binary_rep; j++) {
if (*binary_rep == '1')
int_arr[i] = int_arr[i] * 2 + 1;
else if (*binary_rep == '0')
int_arr[i] *= 2;
binary_rep++;
}
i++; /* amount of real integers */
}
int_string = ntru_malloc(CHAR_SIZE * (i + 1));
for (uint32_t j = 0; j < i; j++)
int_string[j] = (char) int_arr[j];
result->ptr = int_string;
result->len = i;
free(int_arr);
return result;
}
/*------------------------------------------------------------------------*/
fmpz_poly_t *
ascii_bin_to_bin_poly(const char *to_poly, const ntru_context *ctx)
{
uint32_t i = 0;
fmpz_poly_t *new_poly = ntru_malloc(sizeof(*new_poly));
fmpz_poly_init(*new_poly);
while (to_poly[i] && i < ctx->N) {
fmpz_poly_set_coeff_si(*new_poly,
i,
(to_poly[i] == '0') ? -1 : 1);
i++;
}
return new_poly;
}
/*------------------------------------------------------------------------*/
fmpz_poly_t **
ascii_to_bin_poly_arr(const string *to_poly, const ntru_context *ctx)
{
char *cur = to_poly->ptr;
char *out = ntru_malloc(CHAR_SIZE * (to_poly->len * ASCII_BITS + 1));
uint32_t polyc = 0;
fmpz_poly_t **poly_array;
*out = '\0';
for (uint32_t i = 0; i < to_poly->len; i++) {
char *tmp_string = get_int_to_bin_str((int)(*cur));
strcat(out, tmp_string);
cur++;
free(tmp_string);
}
poly_array = ntru_malloc(sizeof(**poly_array) *
(strlen(out) / ctx->N + 1));
for (uint32_t i = 0; i < strlen(out); i += ctx->N) {
char chunk[ctx->N + 1];
size_t real_chunk_size;
real_chunk_size =
(strlen(out + i) > ctx->N) ? ctx->N : strlen(out + i);
memcpy(chunk, out + i, real_chunk_size);
chunk[real_chunk_size] = '\0';
poly_array[polyc] = ascii_bin_to_bin_poly(chunk, ctx);
polyc++;
}
free(out);
poly_array[polyc] = NULL;
return poly_array;
}
/*------------------------------------------------------------------------*/
string *
bin_poly_to_ascii(const fmpz_poly_t poly,
const ntru_context *ctx)
{
string *result_string = ntru_malloc(sizeof(*result_string));
char *binary_rep = ntru_malloc(CHAR_SIZE * (ctx->N));
uint32_t i = 0;
for (uint32_t j = 0; j < ctx->N; j++) {
fmpz *coeff = fmpz_poly_get_coeff_ptr(poly, j);
if (coeff) {
if (!fmpz_cmp_si(coeff, 1))
binary_rep[i] = '1';
else if (!fmpz_cmp_si(coeff, -1))
binary_rep[i] = '0';
} else {
break;
}
i++;
}
result_string->ptr = binary_rep;
result_string->len = i;
return result_string;
}
/*------------------------------------------------------------------------*/
string *
bin_poly_arr_to_ascii(fmpz_poly_t **bin_poly_arr,
const ntru_context *ctx)
{
fmpz_poly_t *ascii_poly;
char *binary_rep = NULL;
size_t string_len = 0;
string *ascii_string = NULL;
size_t old_length = 0,
new_length;
/*
* parse the polynomial coefficients into a string
*/
binary_rep = ntru_calloc(1, CHAR_SIZE * (ctx->N + 1));
while ((ascii_poly = (fmpz_poly_t *)*bin_poly_arr++)) {
string *single_poly_string = NULL;
new_length = CHAR_SIZE * (ctx->N);
REALLOC(binary_rep,
old_length +
new_length +
1); /* trailing null byte */
old_length += new_length;
single_poly_string = bin_poly_to_ascii(*ascii_poly, ctx);
memcpy(binary_rep + string_len,
single_poly_string->ptr,
single_poly_string->len);
string_len += single_poly_string->len;
string_delete(single_poly_string);
}
binary_rep[string_len] = '\0';
ascii_string = get_bin_arr_to_ascii(binary_rep);
free(binary_rep);
return ascii_string;
}
/*------------------------------------------------------------------------*/
string *
poly_to_ascii(const fmpz_poly_t poly,
const ntru_context *ctx)
{
string *result_string = ntru_malloc(sizeof(*result_string));
char *string_rep = ntru_malloc(CHAR_SIZE * (ctx->N));
for (uint32_t j = 0; j < ctx->N; j++) {
uint8_t coeff = fmpz_poly_get_coeff_ui(poly, j);
if (coeff == ctx->q)
string_rep[j] = '\0';
else
string_rep[j] = (char)coeff;
}
result_string->ptr = string_rep;
result_string->len = ctx->N;
return result_string;
}
/*------------------------------------------------------------------------*/
fmpz_poly_t **
base64_to_poly_arr(const string *to_poly, const ntru_context *ctx)
{
uint32_t i = 0,
polyc = 0;
gsize out_len;
guchar *base64_decoded = NULL,
*base_tmp = NULL;
string *new_string = ntru_malloc(sizeof(*new_string));
fmpz_poly_t **poly_array;
char *tmp = ntru_malloc(sizeof(char) * (to_poly->len + 1));
/* g_base64_decode() needs it null-terminated */
memcpy(tmp, to_poly->ptr, to_poly->len);
tmp[to_poly->len] = '\0';
base_tmp = g_base64_decode((const gchar *)tmp, &out_len);
/* g_base64_decode() needs it null-terminated */
REALLOC(tmp, sizeof(char) * (out_len + 1));
memcpy(tmp, base_tmp, out_len);
tmp[out_len] = '\0';
base64_decoded = g_base64_decode((const gchar *)tmp, &out_len);
new_string->ptr = (char *)base64_decoded;
new_string->len = (unsigned long)(out_len);
poly_array = ntru_malloc(sizeof(**poly_array) *
(new_string->len / ctx->N));
while (i < new_string->len) {
uint32_t j = 0;
fmpz_poly_t *new_poly = ntru_malloc(sizeof(*new_poly));
fmpz_poly_init(*new_poly);
while (j < ctx->N) {
fmpz_poly_set_coeff_si(*new_poly,
j,
(uint8_t)(base64_decoded[i]));
j++;
i++;
}
/* fill the last poly with q (which is a non-standard
* coefficient) */
for (uint32_t k = j; k < ctx->N; k++) {
fmpz_poly_set_coeff_si(*new_poly,
k,
ctx->q);
}
poly_array[polyc] = new_poly;
polyc++;
}
poly_array[polyc] = NULL;
string_delete(new_string);
free(base_tmp);
free(tmp);
return poly_array;
}
/*------------------------------------------------------------------------*/
string *
poly_to_base64(const fmpz_poly_t poly,
const ntru_context *ctx)
{
string *result_string = ntru_malloc(sizeof(*result_string));
string *string_rep = NULL;
gchar *base64_string = NULL,
*tmp = NULL;
string_rep = poly_to_ascii(poly, ctx);
tmp = g_base64_encode((const guchar *)string_rep->ptr,
string_rep->len);
base64_string = g_base64_encode((const guchar *)tmp,
strlen(tmp));
result_string->ptr = base64_string;
result_string->len = strlen(base64_string);
string_delete(string_rep);
free(tmp);
return result_string;
}
/*------------------------------------------------------------------------*/
string *
poly_arr_to_base64(fmpz_poly_t **poly_array,
const ntru_context *ctx)
{
fmpz_poly_t *ascii_poly;
char *string_rep = NULL;
size_t string_len = 0;
string *result_string = ntru_malloc(sizeof(*result_string));
size_t old_length = 0,
new_length;
gchar *base64_string = NULL,
*tmp = NULL;
/*
* parse the polynomial coefficients into a string
*/
string_rep = ntru_calloc(1, CHAR_SIZE * (ctx->N + 1));
while ((ascii_poly = *poly_array++)) {
string *poly_str;
poly_str = poly_to_ascii(*ascii_poly, ctx);
new_length = CHAR_SIZE * poly_str->len;
REALLOC(string_rep,
old_length +
new_length);
old_length += new_length;
memcpy(string_rep + string_len,
poly_str->ptr,
poly_str->len);
string_len += poly_str->len;
string_delete(poly_str);
}
tmp = g_base64_encode((const guchar *)string_rep, string_len);
base64_string = g_base64_encode((const guchar *)tmp,
strlen(tmp));
result_string->ptr = base64_string;
result_string->len = strlen(base64_string);
free(string_rep);
free(tmp);
return result_string;
}
/*------------------------------------------------------------------------*/