/* * Copyright (C) 2014 FH Bielefeld * * This file is part of a FH Bielefeld project. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ /* TODO: clean up some iterators */ /* TODO: ascii_to_bin_poly() should accept a string, not a c_str */ /** * @file ascii_poly.c * This file allows to convert between ascii strings * and polynomials. * @brief asci->poly and poly->ascii */ #include "ascii_poly.h" #include "common.h" #include "context.h" #include "mem.h" #include "ntru_string.h" #include "poly.h" #include #include #include #include #include #include /** * Convert an integer to it's binary representation * as a string and return it. * * As in: 90 => "10110101" * * @param value the integer to convert * @return the binary representation as a newly allocated string */ static char * get_int_to_bin_str(uint8_t value); /** * Converts a binary representation of multiple concatenated * integers to the corresponding array of ascii chars, which * is NULL-terminated. * * It reads in 8bit chunks, as in: * * 10110101|00111100|01011001 => 90|60|89 => "Z= 0; --i, value >>= 1) bin_string[i] = (value & 1) + '0'; return bin_string; } /*------------------------------------------------------------------------*/ static string * get_bin_arr_to_ascii(const char *binary_rep) { size_t int_arr_size = 0; uint8_t *int_arr = NULL; uint32_t i = 0; char *int_string = NULL; string *result = ntru_malloc(sizeof(*result)); if (!binary_rep || !*binary_rep) return NULL; int_arr_size = strlen(binary_rep) / ASCII_BITS + 1; int_arr = ntru_malloc(sizeof(*int_arr) * int_arr_size); while (*binary_rep) { int_arr[i] = 0; /* convert one binary integer to real integer */ for (uint32_t j = 0; j < ASCII_BITS && *binary_rep; j++) { if (*binary_rep == '1') int_arr[i] = int_arr[i] * 2 + 1; else if (*binary_rep == '0') int_arr[i] *= 2; binary_rep++; } i++; /* amount of real integers */ } int_string = ntru_malloc(CHAR_SIZE * (i + 1)); for (uint32_t j = 0; j < i; j++) int_string[j] = (char) int_arr[j]; result->ptr = int_string; result->len = i; free(int_arr); return result; } /*------------------------------------------------------------------------*/ fmpz_poly_t * ascii_bin_to_bin_poly(const char *to_poly, const ntru_context *ctx) { uint32_t i = 0; fmpz_poly_t *new_poly = ntru_malloc(sizeof(*new_poly)); fmpz_poly_init(*new_poly); while (to_poly[i] && i < ctx->N) { fmpz_poly_set_coeff_si(*new_poly, i, (to_poly[i] == '0') ? -1 : 1); i++; } return new_poly; } /*------------------------------------------------------------------------*/ fmpz_poly_t ** ascii_to_bin_poly_arr(const string *to_poly, const ntru_context *ctx) { char *cur = to_poly->ptr; char *out = ntru_malloc(CHAR_SIZE * (to_poly->len * ASCII_BITS + 1)); uint32_t polyc = 0; fmpz_poly_t **poly_array; *out = '\0'; for (uint32_t i = 0; i < to_poly->len; i++) { char *tmp_string = get_int_to_bin_str((int)(*cur)); strcat(out, tmp_string); cur++; free(tmp_string); } poly_array = ntru_malloc(sizeof(**poly_array) * (strlen(out) / ctx->N + 1)); for (uint32_t i = 0; i < strlen(out); i += ctx->N) { char chunk[ctx->N + 1]; size_t real_chunk_size; real_chunk_size = (strlen(out + i) > ctx->N) ? ctx->N : strlen(out + i); memcpy(chunk, out + i, real_chunk_size); chunk[real_chunk_size] = '\0'; poly_array[polyc] = ascii_bin_to_bin_poly(chunk, ctx); polyc++; } free(out); poly_array[polyc] = NULL; return poly_array; } /*------------------------------------------------------------------------*/ string * bin_poly_to_ascii(const fmpz_poly_t poly, const ntru_context *ctx) { string *result_string = ntru_malloc(sizeof(*result_string)); char *binary_rep = ntru_malloc(CHAR_SIZE * (ctx->N)); uint32_t i = 0; for (uint32_t j = 0; j < ctx->N; j++) { fmpz *coeff = fmpz_poly_get_coeff_ptr(poly, j); if (coeff) { if (!fmpz_cmp_si(coeff, 1)) binary_rep[i] = '1'; else if (!fmpz_cmp_si(coeff, -1)) binary_rep[i] = '0'; } else { break; } i++; } result_string->ptr = binary_rep; result_string->len = i; return result_string; } /*------------------------------------------------------------------------*/ string * bin_poly_arr_to_ascii(fmpz_poly_t **bin_poly_arr, const ntru_context *ctx) { fmpz_poly_t *ascii_poly; char *binary_rep = NULL; size_t string_len = 0; string *ascii_string = NULL; size_t old_length = 0, new_length; /* * parse the polynomial coefficients into a string */ binary_rep = ntru_calloc(1, CHAR_SIZE * (ctx->N + 1)); while ((ascii_poly = (fmpz_poly_t *)*bin_poly_arr++)) { string *single_poly_string = NULL; new_length = CHAR_SIZE * (ctx->N); REALLOC(binary_rep, old_length + new_length + 1); /* trailing null byte */ old_length += new_length; single_poly_string = bin_poly_to_ascii(*ascii_poly, ctx); memcpy(binary_rep + string_len, single_poly_string->ptr, single_poly_string->len); string_len += single_poly_string->len; string_delete(single_poly_string); } binary_rep[string_len] = '\0'; ascii_string = get_bin_arr_to_ascii(binary_rep); free(binary_rep); return ascii_string; } /*------------------------------------------------------------------------*/ string * poly_to_ascii(const fmpz_poly_t poly, const ntru_context *ctx) { string *result_string = ntru_malloc(sizeof(*result_string)); char *string_rep = ntru_malloc(CHAR_SIZE * (ctx->N)); for (uint32_t j = 0; j < ctx->N; j++) { uint8_t coeff = fmpz_poly_get_coeff_ui(poly, j); if (coeff == ctx->q) string_rep[j] = '\0'; else string_rep[j] = (char)coeff; } result_string->ptr = string_rep; result_string->len = ctx->N; return result_string; } /*------------------------------------------------------------------------*/ fmpz_poly_t ** base64_to_poly_arr(const string *to_poly, const ntru_context *ctx) { uint32_t i = 0, polyc = 0; gsize out_len; guchar *base64_decoded = NULL, *base_tmp = NULL; string *new_string = ntru_malloc(sizeof(*new_string)); fmpz_poly_t **poly_array; char *tmp = ntru_malloc(sizeof(char) * (to_poly->len + 1)); /* g_base64_decode() needs it null-terminated */ memcpy(tmp, to_poly->ptr, to_poly->len); tmp[to_poly->len] = '\0'; base_tmp = g_base64_decode((const gchar *)tmp, &out_len); /* g_base64_decode() needs it null-terminated */ REALLOC(tmp, sizeof(char) * (out_len + 1)); memcpy(tmp, base_tmp, out_len); tmp[out_len] = '\0'; base64_decoded = g_base64_decode((const gchar *)tmp, &out_len); new_string->ptr = (char *)base64_decoded; new_string->len = (unsigned long)(out_len); poly_array = ntru_malloc(sizeof(**poly_array) * (new_string->len / ctx->N)); while (i < new_string->len) { uint32_t j = 0; fmpz_poly_t *new_poly = ntru_malloc(sizeof(*new_poly)); fmpz_poly_init(*new_poly); while (j < ctx->N) { fmpz_poly_set_coeff_si(*new_poly, j, (uint8_t)(base64_decoded[i])); j++; i++; } /* fill the last poly with q (which is a non-standard * coefficient) */ for (uint32_t k = j; k < ctx->N; k++) { fmpz_poly_set_coeff_si(*new_poly, k, ctx->q); } poly_array[polyc] = new_poly; polyc++; } poly_array[polyc] = NULL; string_delete(new_string); free(base_tmp); free(tmp); return poly_array; } /*------------------------------------------------------------------------*/ string * poly_to_base64(const fmpz_poly_t poly, const ntru_context *ctx) { string *result_string = ntru_malloc(sizeof(*result_string)); string *string_rep = NULL; gchar *base64_string = NULL, *tmp = NULL; string_rep = poly_to_ascii(poly, ctx); tmp = g_base64_encode((const guchar *)string_rep->ptr, string_rep->len); base64_string = g_base64_encode((const guchar *)tmp, strlen(tmp)); result_string->ptr = base64_string; result_string->len = strlen(base64_string); string_delete(string_rep); free(tmp); return result_string; } /*------------------------------------------------------------------------*/ string * poly_arr_to_base64(fmpz_poly_t **poly_array, const ntru_context *ctx) { fmpz_poly_t *ascii_poly; char *string_rep = NULL; size_t string_len = 0; string *result_string = ntru_malloc(sizeof(*result_string)); size_t old_length = 0, new_length; gchar *base64_string = NULL, *tmp = NULL; /* * parse the polynomial coefficients into a string */ string_rep = ntru_calloc(1, CHAR_SIZE * (ctx->N + 1)); while ((ascii_poly = *poly_array++)) { string *poly_str; poly_str = poly_to_ascii(*ascii_poly, ctx); new_length = CHAR_SIZE * poly_str->len; REALLOC(string_rep, old_length + new_length); old_length += new_length; memcpy(string_rep + string_len, poly_str->ptr, poly_str->len); string_len += poly_str->len; string_delete(poly_str); } tmp = g_base64_encode((const guchar *)string_rep, string_len); base64_string = g_base64_encode((const guchar *)tmp, strlen(tmp)); result_string->ptr = base64_string; result_string->len = strlen(base64_string); free(string_rep); free(tmp); return result_string; } /*------------------------------------------------------------------------*/