135 lines
3.4 KiB
C
135 lines
3.4 KiB
C
/*=============================================================================
|
|
|
|
This file is part of FLINT.
|
|
|
|
FLINT is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
FLINT is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with FLINT; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2012 Sebastian Pancratz
|
|
|
|
******************************************************************************/
|
|
|
|
/*
|
|
Benchmarks for the q-adic exponential (rectangular) routine.
|
|
|
|
We consider the set-up with p = 17, N = 2^i, i = 0, ..., 19,
|
|
and compute the norm of p A mod p^N, where
|
|
|
|
A = [a{0},...,a{d-1}], where a{i} = (3+i)^{3N}.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <sys/types.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
#include <gmp.h>
|
|
|
|
#include "flint.h"
|
|
#include "fmpz.h"
|
|
#include "qadic.h"
|
|
|
|
int
|
|
main(void)
|
|
{
|
|
slong l, len = 20;
|
|
slong runs[] = {
|
|
10000000, 1000000, 100000, 100000, 10000,
|
|
10000, 1000, 1000, 1000, 100,
|
|
10, 10, 1, 1, 1,
|
|
1, 1, 1, 1, 1
|
|
};
|
|
slong N[] = {
|
|
1, 2, 4, 8, 16,
|
|
32, 64, 128, 256, 512,
|
|
1024, WORD(1) << 11, WORD(1) << 12, WORD(1) << 13, WORD(1) << 14,
|
|
WORD(1) << 15, WORD(1) << 16, WORD(1) << 17, WORD(1) << 18, WORD(1) << 19
|
|
};
|
|
slong T[20] = {0};
|
|
|
|
flint_printf("Benchmark for q-adic exponential (rectangular).\n");
|
|
fflush(stdout);
|
|
|
|
for (l = 0; l < FLINT_MIN(16, len); l++)
|
|
{
|
|
FLINT_TEST_INIT(state);
|
|
slong d = 5, i, n = N[l], r;
|
|
clock_t c0, c1;
|
|
long double cputime;
|
|
|
|
fmpz_t p;
|
|
qadic_ctx_t ctx;
|
|
qadic_t b;
|
|
qadic_t z;
|
|
|
|
|
|
|
|
fmpz_init_set_ui(p, 17);
|
|
|
|
qadic_ctx_init_conway(ctx, p, d, n, n, "X", PADIC_VAL_UNIT);
|
|
|
|
qadic_init(b);
|
|
qadic_init(z);
|
|
|
|
padic_poly_fit_length(b, d);
|
|
_padic_poly_set_length(b, d);
|
|
b->val = 1;
|
|
|
|
for (i = 0; i < d; i++)
|
|
{
|
|
fmpz_t f, pN;
|
|
|
|
fmpz_init(f);
|
|
fmpz_init(pN);
|
|
fmpz_set_ui(f, 3 + i);
|
|
fmpz_pow_ui(pN, p, n - 1);
|
|
fmpz_powm_ui(b->coeffs + i, f, 3 * n, pN);
|
|
fmpz_clear(f);
|
|
fmpz_clear(pN);
|
|
}
|
|
_padic_poly_normalise(b);
|
|
|
|
c0 = clock();
|
|
for (r = runs[l]; (r); r--)
|
|
{
|
|
qadic_exp_rectangular(z, b, ctx);
|
|
qadic_zero(z);
|
|
}
|
|
c1 = clock();
|
|
|
|
cputime = (long double) (c1 - c0) / (long double) CLOCKS_PER_SEC;
|
|
|
|
T[l] = (slong) (cputime * (1000000000 / runs[l]));
|
|
|
|
flint_printf("%2ld, %4XYXYXYXY, %8ld, %wd\n",
|
|
l, cputime, runs[l], T[l]);
|
|
|
|
qadic_clear(b);
|
|
qadic_clear(z);
|
|
|
|
fmpz_clear(p);
|
|
qadic_ctx_clear(ctx);
|
|
flint_randclear(state);
|
|
}
|
|
|
|
flint_printf("Output as a list:\n");
|
|
for (l = 0; l < len; l++)
|
|
flint_printf("%wd, ", T[l]);
|
|
flint_printf("\n");
|
|
}
|
|
|