pqc/external/flint-2.4.3/qadic/profile/p-exp_rectangular.c

135 lines
3.4 KiB
C
Raw Normal View History

2014-05-18 22:03:37 +00:00
/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012 Sebastian Pancratz
******************************************************************************/
/*
Benchmarks for the q-adic exponential (rectangular) routine.
We consider the set-up with p = 17, N = 2^i, i = 0, ..., 19,
and compute the norm of p A mod p^N, where
A = [a{0},...,a{d-1}], where a{i} = (3+i)^{3N}.
*/
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#include <gmp.h>
#include "flint.h"
#include "fmpz.h"
#include "qadic.h"
int
main(void)
{
slong l, len = 20;
slong runs[] = {
10000000, 1000000, 100000, 100000, 10000,
10000, 1000, 1000, 1000, 100,
10, 10, 1, 1, 1,
1, 1, 1, 1, 1
};
slong N[] = {
1, 2, 4, 8, 16,
32, 64, 128, 256, 512,
1024, WORD(1) << 11, WORD(1) << 12, WORD(1) << 13, WORD(1) << 14,
WORD(1) << 15, WORD(1) << 16, WORD(1) << 17, WORD(1) << 18, WORD(1) << 19
};
slong T[20] = {0};
flint_printf("Benchmark for q-adic exponential (rectangular).\n");
fflush(stdout);
for (l = 0; l < FLINT_MIN(16, len); l++)
{
FLINT_TEST_INIT(state);
slong d = 5, i, n = N[l], r;
clock_t c0, c1;
long double cputime;
fmpz_t p;
qadic_ctx_t ctx;
qadic_t b;
qadic_t z;
fmpz_init_set_ui(p, 17);
qadic_ctx_init_conway(ctx, p, d, n, n, "X", PADIC_VAL_UNIT);
qadic_init(b);
qadic_init(z);
padic_poly_fit_length(b, d);
_padic_poly_set_length(b, d);
b->val = 1;
for (i = 0; i < d; i++)
{
fmpz_t f, pN;
fmpz_init(f);
fmpz_init(pN);
fmpz_set_ui(f, 3 + i);
fmpz_pow_ui(pN, p, n - 1);
fmpz_powm_ui(b->coeffs + i, f, 3 * n, pN);
fmpz_clear(f);
fmpz_clear(pN);
}
_padic_poly_normalise(b);
c0 = clock();
for (r = runs[l]; (r); r--)
{
qadic_exp_rectangular(z, b, ctx);
qadic_zero(z);
}
c1 = clock();
cputime = (long double) (c1 - c0) / (long double) CLOCKS_PER_SEC;
T[l] = (slong) (cputime * (1000000000 / runs[l]));
flint_printf("%2ld, %4XYXYXYXY, %8ld, %wd\n",
l, cputime, runs[l], T[l]);
qadic_clear(b);
qadic_clear(z);
fmpz_clear(p);
qadic_ctx_clear(ctx);
flint_randclear(state);
}
flint_printf("Output as a list:\n");
for (l = 0; l < len; l++)
flint_printf("%wd, ", T[l]);
flint_printf("\n");
}