cga/Algorithms/PolygonTriangulation.hs
2015-01-08 01:37:49 +01:00

105 lines
2.9 KiB
Haskell

{-# OPTIONS_HADDOCK ignore-exports #-}
{-# LANGUAGE ViewPatterns #-}
module Algorithms.PolygonTriangulation where
import Algebra.Vector
import Diagrams.Coordinates
data VCategory = VStart
| VEnd
| VRegular
| VSplit
| VMerge
deriving (Show, Eq)
-- |Classify all vertices on a polygon into five categories (see VCategory).
classifyList :: [PT] -> [(PT, VCategory)]
classifyList p@(x:y:_:_) =
-- need to handle the first and last element separately
[classify (last p) x y] ++ go p ++ [classify (last . init $ p) (last p) x]
where
go :: [PT] -> [(PT, VCategory)]
go (x':y':z':xs) = classify x' y' z' : go (y':z':xs)
go _ = []
classifyList _ = []
-- |Classify a vertex on a polygon given it's next and previous vertex
-- into five categories (see VCategory).
classify :: PT -- ^ prev vertex
-> PT -- ^ classify this one
-> PT -- ^ next vertex
-> (PT, VCategory)
classify prev v next
| isVStart prev v next = (v, VStart)
| isVSplit prev v next = (v, VSplit)
| isVEnd prev v next = (v, VEnd)
| isVMerge prev v next = (v, VMerge)
| otherwise = (v, VRegular)
-- |Whether the vertex, given it's next and previous vertex,
-- is a start vertex.
isVStart :: PT -- ^ previous vertex
-> PT -- ^ vertice to check
-> PT -- ^ next vertex
-> Bool
isVStart prev v next =
(ptCmpY next v == LT) && (ptCmpY prev v == LT) && (cw next v prev)
-- |Whether the vertex, given it's next and previous vertex,
-- is a split vertex.
isVSplit :: PT -- ^ previous vertex
-> PT -- ^ vertice to check
-> PT -- ^ next vertex
-> Bool
isVSplit prev v next =
(ptCmpY prev v == LT) && (ptCmpY next v == LT) && (cw prev v next)
-- |Whether the vertex, given it's next and previous vertex,
-- is an end vertex.
isVEnd :: PT -- ^ previous vertex
-> PT -- ^ vertice to check
-> PT -- ^ next vertex
-> Bool
isVEnd prev v next =
(ptCmpY prev v == GT) && (ptCmpY next v == GT) && (cw next v prev)
-- |Whether the vertex, given it's next and previous vertex,
-- is a merge vertex.
isVMerge :: PT -- ^ previous vertex
-> PT -- ^ vertice to check
-> PT -- ^ next vertex
-> Bool
isVMerge prev v next =
(ptCmpY next v == GT) && (ptCmpY prev v == GT) && (cw prev v next)
-- |Whether the vertex, given it's next and previous vertex,
-- is a regular vertex.
isVRegular :: PT -- ^ previous vertex
-> PT -- ^ vertice to check
-> PT -- ^ next vertex
-> Bool
isVRegular prev v next =
(not . isVStart prev v $ next)
&& (not . isVSplit prev v $ next)
&& (not . isVEnd prev v $ next)
&& (not . isVMerge prev v $ next)
-- |Check if polygon is y-monotone.
isYmonotone :: [PT] -> Bool
isYmonotone poly =
not
. any (\x -> x == VSplit || x == VMerge)
. fmap snd
$ classifyList poly