{-# OPTIONS_HADDOCK ignore-exports #-} {-# LANGUAGE ViewPatterns #-} module Algorithms.PolygonTriangulation where import Algebra.Vector import Diagrams.Coordinates data VCategory = VStart | VEnd | VRegular | VSplit | VMerge deriving (Show, Eq) -- |Classify all vertices on a polygon into five categories (see VCategory). classifyList :: [PT] -> [(PT, VCategory)] classifyList p@(x:y:_:_) = -- need to handle the first and last element separately [classify (last p) x y] ++ go p ++ [classify (last . init $ p) (last p) x] where go :: [PT] -> [(PT, VCategory)] go (x':y':z':xs) = classify x' y' z' : go (y':z':xs) go _ = [] classifyList _ = [] -- |Classify a vertex on a polygon given it's next and previous vertex -- into five categories (see VCategory). classify :: PT -- ^ prev vertex -> PT -- ^ classify this one -> PT -- ^ next vertex -> (PT, VCategory) classify prev v next | isVStart prev v next = (v, VStart) | isVSplit prev v next = (v, VSplit) | isVEnd prev v next = (v, VEnd) | isVMerge prev v next = (v, VMerge) | otherwise = (v, VRegular) -- |Whether the vertex, given it's next and previous vertex, -- is a start vertex. isVStart :: PT -- ^ previous vertex -> PT -- ^ vertice to check -> PT -- ^ next vertex -> Bool isVStart prev v next = (ptCmpY next v == LT) && (ptCmpY prev v == LT) && (cw next v prev) -- |Whether the vertex, given it's next and previous vertex, -- is a split vertex. isVSplit :: PT -- ^ previous vertex -> PT -- ^ vertice to check -> PT -- ^ next vertex -> Bool isVSplit prev v next = (ptCmpY prev v == LT) && (ptCmpY next v == LT) && (cw prev v next) -- |Whether the vertex, given it's next and previous vertex, -- is an end vertex. isVEnd :: PT -- ^ previous vertex -> PT -- ^ vertice to check -> PT -- ^ next vertex -> Bool isVEnd prev v next = (ptCmpY prev v == GT) && (ptCmpY next v == GT) && (cw next v prev) -- |Whether the vertex, given it's next and previous vertex, -- is a merge vertex. isVMerge :: PT -- ^ previous vertex -> PT -- ^ vertice to check -> PT -- ^ next vertex -> Bool isVMerge prev v next = (ptCmpY next v == GT) && (ptCmpY prev v == GT) && (cw prev v next) -- |Whether the vertex, given it's next and previous vertex, -- is a regular vertex. isVRegular :: PT -- ^ previous vertex -> PT -- ^ vertice to check -> PT -- ^ next vertex -> Bool isVRegular prev v next = (not . isVStart prev v $ next) && (not . isVSplit prev v $ next) && (not . isVEnd prev v $ next) && (not . isVMerge prev v $ next) -- |Check if polygon is y-monotone. isYmonotone :: [PT] -> Bool isYmonotone poly = not . any (\x -> x == VSplit || x == VMerge) . fmap snd $ classifyList poly