Rework vector/point typesystem

Don't rely on Data.Vector.V2 and friend anymore, but use
the types we have from Diagrams already and enhance them.
This commit is contained in:
hasufell 2014-10-08 16:31:57 +02:00
parent da3f71bfc0
commit 46377164b4
No known key found for this signature in database
GPG Key ID: 220CD1C5BDEED020
3 changed files with 77 additions and 29 deletions

View File

@ -21,7 +21,7 @@ import Parser.Meshparser
-- coordinates and common properties.
data Diag = Diag {
mkDiag :: DiagProp
-> VTable
-> [PT]
-> Diagram Cairo R2
}
@ -31,9 +31,9 @@ data DiagProp = MkProp {
-- |The thickness of the dots.
t :: Double,
-- |The dimensions of the x-axis.
dX :: (Double, Double),
dX :: Coord,
-- |The dimensions of the y-axis.
dY :: (Double, Double),
dY :: Coord,
-- |Algorithm to use.
alg :: Int
}
@ -95,13 +95,11 @@ showCoordinates :: Diag
showCoordinates = Diag f
where
f p vt
= position (zip (map mkPoint . filter (inRange (dX p) (dY p)) $ vt)
= position (zip (filter (inRange (dX p) (dY p)) $ vt)
(repeat dot)) # moveTo (p2(xOffset p, yOffset p))
where
-- a dot itself is a diagram
dot = (circle $ t p :: Diagram Cairo R2) # fc black
-- this is just abstraction
mkPoint (x,y) = p2 (x,y)
-- |Creates a Diagram that shows an XAxis which is bound
@ -129,7 +127,7 @@ showWhiteRectB = Diag f
-- |Create the Diagram from the VTable.
diag :: DiagProp -> VTable -> Diagram Cairo R2
diag :: DiagProp -> [PT] -> Diagram Cairo R2
diag p = case alg p of
0 -> mkDiag
(mconcat [showCoordinates, showXAxis, showYAxis, showWhiteRectB])
@ -141,7 +139,7 @@ diag p = case alg p of
-- of an obj file.
diagS :: DiagProp -> String -> Diagram Cairo R2
diagS p mesh
= diag p .
= diag p .
meshToArr $
mesh

View File

@ -2,26 +2,74 @@
module LinearAlgebra.Vector where
import Data.Vector.Class
import Diagrams.TwoD.Types
type Vec = R2
type PT = P2
type Coord = (Double, Double)
type Angle = Double
-- |Checks whether the Coordinates are in a given dimension.
inRange :: (Double, Double) -- ^ X dimension
-> (Double, Double) -- ^ Y dimension
-> (Double, Double) -- ^ Coordinates
-> Bool -- ^ result
inRange (xlD, xuD) (ylD, yuD) (x,y)
-- |Checks whether the Point is in a given dimension.
inRange :: Coord -- ^ X dimension
-> Coord -- ^ Y dimension
-> PT -- ^ Coordinates
-> Bool -- ^ result
inRange (xlD, xuD) (ylD, yuD) p
= x <= xuD && x >= xlD && y <= yuD && y >= ylD
where
(x, y) = unp2 p
-- |Get the angle between two vectors in degrees.
getAngle :: (Vector v) => v -> v -> Angle
getAngle a b = (*) 180.0 .
flip (/) pi .
acos .
flip (/) (vmag a * vmag b) .
vdot a $
getAngle :: Vec -> Vec -> Double
getAngle a b = acos .
flip (/) (vecLength a * vecLength b) .
scalarProd a $
b
-- |Get the length of a vector.
vecLength :: Vec -> Double
vecLength v = sqrt (x^2 + y^2)
where
(x, y) = unr2 v
-- |Compute the scalar product of two vectors.
scalarProd :: Vec -> Vec -> Double
scalarProd v1 v2 = a1 * b1 + a2 * b2
where
(a1, a2) = unr2 v1
(b1, b2) = unr2 v2
-- |Construct a vector that points to a point from the origin.
pt2Vec :: PT -> Vec
pt2Vec = r2 . unp2
-- |Give the point which is at the coordinates the vector
-- points to from the origin.
vec2Pt :: Vec -> PT
vec2Pt = p2 . unr2
-- |Construct a vector between two points.
vp2 :: PT -- ^ vector origin
-> PT -- ^ vector points here
-> Vec
vp2 a b = (pt2Vec b) - (pt2Vec a)
-- |Checks if 3 points a,b,c build a counterclock wise triangle by
-- connecting a-b-c. This is done by computing thed determinant and
-- checking the algebraic sign.
ccw :: PT -> PT -> PT -> Bool
ccw a b c = (bx - ax) *
(cy - ay) -
(by - ay) *
(cx - ax) >= 0
where
(ax, ay) = unp2 a
(bx, by) = unp2 b
(cx, cy) = unp2 c

View File

@ -1,23 +1,25 @@
{-# OPTIONS_HADDOCK ignore-exports #-}
module Parser.Meshparser (VTable, meshToArr) where
module Parser.Meshparser (meshToArr) where
import Control.Applicative
import Diagrams.TwoD.Types
import LinearAlgebra.Vector
import Parser.Core
-- |The VTable is represented by a 'Double' tuple, 2-dimensional.
type VTable = [(Double, Double)]
-- | Convert a text String with multiple vertices into
-- an array of float tuples.
meshToArr :: String -- ^ the string to convert
-> VTable -- ^ the resulting vertice table
meshToArr xs = fmap (\(Just (x, _)) -> x) .
-> [PT] -- ^ the resulting vertice table
meshToArr xs = fmap (p2) .
fmap (\(Just (x, _)) -> x) .
filter (/= Nothing) .
fmap (runParser parseVertice) .
lines $
xs
-- | Creates a Parser that accepts a single vertice, such as 'v 1.0 2.0'.
parseVertice :: Parser (Double, Double)
parseVertice = (,) <$>