180 lines
5.3 KiB
C
180 lines
5.3 KiB
C
/*=============================================================================
|
|
|
|
This file is part of FLINT.
|
|
|
|
FLINT is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
FLINT is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with FLINT; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2010 Sebastian Pancratz
|
|
|
|
******************************************************************************/
|
|
|
|
#include <stdlib.h>
|
|
#include <gmp.h>
|
|
#include "flint.h"
|
|
#include "fmpz.h"
|
|
#include "fmpz_vec.h"
|
|
#include "fmpq_poly.h"
|
|
|
|
void _fmpq_poly_divrem(fmpz * Q, fmpz_t q, fmpz * R, fmpz_t r,
|
|
const fmpz * A, const fmpz_t a, slong lenA,
|
|
const fmpz * B, const fmpz_t b, slong lenB, const fmpz_preinvn_t inv)
|
|
{
|
|
slong lenQ = lenA - lenB + 1;
|
|
slong lenR = lenB - 1;
|
|
ulong d;
|
|
const fmpz * lead = B + (lenB - 1);
|
|
|
|
if (lenB == 1)
|
|
{
|
|
_fmpq_poly_scalar_div_fmpq(Q, q, A, a, lenA, B, b);
|
|
fmpz_one(r);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
From pseudo division over Z we have
|
|
lead^d * A = Q * B + R
|
|
and thus
|
|
{A, a} = {b * Q, a * lead^d} * {B, b} + {R, a * lead^d}.
|
|
*/
|
|
_fmpz_poly_pseudo_divrem(Q, R, &d, A, lenA, B, lenB, inv);
|
|
|
|
/* Determine the actual length of R */
|
|
for ( ; lenR != 0 && fmpz_is_zero(R + (lenR - 1)); lenR--) ;
|
|
|
|
/* 1. lead^d == +-1. {Q, q} = {b Q, a}, {R, r} = {R, a} up to sign */
|
|
if (d == UWORD(0) || *lead == WORD(1) || *lead == WORD(-1))
|
|
{
|
|
fmpz_one(q);
|
|
_fmpq_poly_scalar_mul_fmpz(Q, q, Q, q, lenQ, b);
|
|
_fmpq_poly_scalar_div_fmpz(Q, q, Q, q, lenQ, a);
|
|
|
|
fmpz_one(r);
|
|
if (lenR > 0)
|
|
_fmpq_poly_scalar_div_fmpz(R, r, R, r, lenR, a);
|
|
|
|
if (*lead == WORD(-1) && d % UWORD(2))
|
|
{
|
|
_fmpz_vec_neg(Q, Q, lenQ);
|
|
_fmpz_vec_neg(R, R, lenR);
|
|
}
|
|
}
|
|
/* 2. lead^d != +-1. {Q, q} = {b Q, a lead^d}, {R, r} = {R, a lead^d} */
|
|
else
|
|
{
|
|
/*
|
|
TODO: Improve this. Clearly we do not need to compute
|
|
den = a lead^d in many cases, but can determine the GCD from
|
|
lead alone already.
|
|
*/
|
|
fmpz_t den;
|
|
fmpz_init(den);
|
|
fmpz_pow_ui(den, lead, d);
|
|
fmpz_mul(den, a, den);
|
|
|
|
fmpz_one(q);
|
|
_fmpq_poly_scalar_mul_fmpz(Q, q, Q, q, lenQ, b);
|
|
_fmpq_poly_scalar_div_fmpz(Q, q, Q, q, lenQ, den);
|
|
|
|
fmpz_one(r);
|
|
if (lenR > 0)
|
|
_fmpq_poly_scalar_div_fmpz(R, r, R, r, lenR, den);
|
|
|
|
fmpz_clear(den);
|
|
}
|
|
}
|
|
|
|
void fmpq_poly_divrem(fmpq_poly_t Q, fmpq_poly_t R,
|
|
const fmpq_poly_t poly1, const fmpq_poly_t poly2)
|
|
{
|
|
slong lenA, lenB, lenQ, lenR;
|
|
|
|
if (fmpq_poly_is_zero(poly2))
|
|
{
|
|
flint_printf("Exception (fmpq_poly_divrem). Division by zero.\n");
|
|
abort();
|
|
}
|
|
if (Q == R)
|
|
{
|
|
flint_printf("Exception (fmpq_poly_divrem). Output arguments aliased.\n");
|
|
abort();
|
|
}
|
|
|
|
/* Deal with the various other cases of aliasing. */
|
|
if (R == poly1 || R == poly2)
|
|
{
|
|
if (Q == poly1 || Q == poly2)
|
|
{
|
|
fmpq_poly_t tempQ, tempR;
|
|
fmpq_poly_init(tempQ);
|
|
fmpq_poly_init(tempR);
|
|
fmpq_poly_divrem(tempQ, tempR, poly1, poly2);
|
|
fmpq_poly_swap(Q, tempQ);
|
|
fmpq_poly_swap(R, tempR);
|
|
fmpq_poly_clear(tempQ);
|
|
fmpq_poly_clear(tempR);
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
fmpq_poly_t tempR;
|
|
fmpq_poly_init(tempR);
|
|
fmpq_poly_divrem(Q, tempR, poly1, poly2);
|
|
fmpq_poly_swap(R, tempR);
|
|
fmpq_poly_clear(tempR);
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (Q == poly1 || Q == poly2)
|
|
{
|
|
fmpq_poly_t tempQ;
|
|
fmpq_poly_init(tempQ);
|
|
fmpq_poly_divrem(tempQ, R, poly1, poly2);
|
|
fmpq_poly_swap(Q, tempQ);
|
|
fmpq_poly_clear(tempQ);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (poly1->length < poly2->length)
|
|
{
|
|
fmpq_poly_set(R, poly1);
|
|
fmpq_poly_zero(Q);
|
|
return;
|
|
}
|
|
|
|
lenA = poly1->length;
|
|
lenB = poly2->length;
|
|
lenQ = lenA - lenB + 1;
|
|
lenR = lenB - 1;
|
|
|
|
fmpq_poly_fit_length(Q, lenQ);
|
|
fmpq_poly_fit_length(R, lenA); /* XXX: Need at least that much space */
|
|
|
|
_fmpq_poly_divrem(Q->coeffs, Q->den, R->coeffs, R->den,
|
|
poly1->coeffs, poly1->den, poly1->length,
|
|
poly2->coeffs, poly2->den, poly2->length, NULL);
|
|
|
|
_fmpq_poly_set_length(Q, lenQ);
|
|
_fmpq_poly_set_length(R, lenR);
|
|
_fmpq_poly_normalise(R);
|
|
}
|
|
|