178 lines
4.9 KiB
C
178 lines
4.9 KiB
C
/*=============================================================================
|
|
|
|
This file is part of FLINT.
|
|
|
|
FLINT is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
FLINT is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with FLINT; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2012 Sebastian Pancratz
|
|
|
|
******************************************************************************/
|
|
|
|
#include <stdlib.h>
|
|
#include "fmpz_mod_poly.h"
|
|
#include "qadic.h"
|
|
|
|
/*
|
|
Uses Hensel lifting along the polynomial $X^q - X$, which yields
|
|
the formula $z' = z - (z^q - z) / (q z^{q-1} - 1)$.
|
|
|
|
We observe that the denominator is an approximation to $q - 1$,
|
|
which allows us to use the formula $z' = z - (q-1)^{-1} (z^q - z)$
|
|
during the iteration.
|
|
|
|
Supports aliasing between \code{rop} and \code{op}.
|
|
*/
|
|
|
|
void _qadic_teichmuller(fmpz *rop, const fmpz *op, slong len,
|
|
const fmpz *a, const slong *j, slong lena,
|
|
const fmpz_t p, slong N)
|
|
{
|
|
const slong d = j[lena - 1];
|
|
|
|
if (len == 1)
|
|
{
|
|
_padic_teichmuller(rop, op, p, N);
|
|
_fmpz_vec_zero(rop + 1, d - 1);
|
|
}
|
|
else if (N == 1)
|
|
{
|
|
_fmpz_vec_scalar_mod_fmpz(rop, op, len, p);
|
|
_fmpz_vec_zero(rop + len, d - len);
|
|
}
|
|
else /* d, N >= 2 */
|
|
{
|
|
slong *e, i, n;
|
|
fmpz *pow, *u, *t, *w;
|
|
fmpz_t inv, q, qm1;
|
|
|
|
n = FLINT_CLOG2(N) + 1;
|
|
|
|
e = flint_malloc(n * sizeof(slong));
|
|
for (e[i = 0] = N; e[i] > 1; i++)
|
|
e[i + 1] = (e[i] + 1) / 2;
|
|
|
|
w = _fmpz_vec_init(n + n + (2 * d - 1));
|
|
pow = w;
|
|
u = w + n;
|
|
t = w + 2 * n;
|
|
|
|
fmpz_init(inv);
|
|
fmpz_init(q);
|
|
fmpz_init(qm1);
|
|
|
|
fmpz_pow_ui(q, p, d);
|
|
fmpz_sub_ui(qm1, q, 1);
|
|
|
|
/* Compute powers of p */
|
|
{
|
|
fmpz_one(t);
|
|
fmpz_set(pow + i, p);
|
|
}
|
|
for (i--; i >= 1; i--)
|
|
{
|
|
if (e[i] & WORD(1))
|
|
{
|
|
fmpz_mul(pow + i, t, pow + (i + 1));
|
|
fmpz_mul(t, t, t);
|
|
}
|
|
else
|
|
{
|
|
fmpz_mul(t, t, pow + (i + 1));
|
|
fmpz_mul(pow + i, pow + (i + 1), pow + (i + 1));
|
|
}
|
|
}
|
|
{
|
|
if (e[i] & WORD(1))
|
|
fmpz_mul(pow + i, t, pow + (i + 1));
|
|
else
|
|
fmpz_mul(pow + i, pow + (i + 1), pow + (i + 1));
|
|
}
|
|
|
|
/* Compute reduced units for (q-1) */
|
|
{
|
|
fmpz_mod(u + 0, qm1, pow + 0);
|
|
}
|
|
for (i = 1; i < n; i++)
|
|
{
|
|
fmpz_mod(u + i, u + (i - 1), pow + i);
|
|
}
|
|
|
|
/* Run Newton iteration */
|
|
i = n - 1;
|
|
{
|
|
_fmpz_vec_scalar_mod_fmpz(rop, op, len, pow + i);
|
|
_fmpz_vec_zero(rop + len, d - len);
|
|
|
|
fmpz_sub_ui(inv, p, 1);
|
|
}
|
|
for (i--; i >= 0; i--)
|
|
{
|
|
/* Lift rop */
|
|
_qadic_pow(t, rop, d, q, a, j, lena, pow + i);
|
|
_fmpz_poly_sub(t, t, d, rop, d);
|
|
_fmpz_vec_scalar_submul_fmpz(rop, t, d, inv);
|
|
_fmpz_vec_scalar_mod_fmpz(rop, rop, d, pow + i);
|
|
|
|
/* Lift inv */
|
|
if (i > 0)
|
|
{
|
|
fmpz_mul(t, inv, inv);
|
|
fmpz_mul(t + 1, u + i, t);
|
|
fmpz_mul_2exp(inv, inv, 1);
|
|
fmpz_sub(inv, inv, t + 1);
|
|
fmpz_mod(inv, inv, pow + i);
|
|
}
|
|
}
|
|
|
|
_fmpz_vec_clear(w, n + n + (2 * d - 1));
|
|
fmpz_clear(inv);
|
|
fmpz_clear(q);
|
|
fmpz_clear(qm1);
|
|
flint_free(e);
|
|
}
|
|
}
|
|
|
|
void qadic_teichmuller(qadic_t rop, const qadic_t op, const qadic_ctx_t ctx)
|
|
{
|
|
const slong N = qadic_prec(rop);
|
|
|
|
if (op->val < 0)
|
|
{
|
|
flint_printf("Exception (qadic_teichmuller). val(op) is negative.\n");
|
|
abort();
|
|
}
|
|
|
|
if (qadic_is_zero(op) || op->val > 0 || N <= 0)
|
|
{
|
|
qadic_zero(rop);
|
|
}
|
|
else
|
|
{
|
|
const slong d = qadic_ctx_degree(ctx);
|
|
|
|
padic_poly_fit_length(rop, d);
|
|
|
|
_qadic_teichmuller(rop->coeffs, op->coeffs, op->length,
|
|
ctx->a, ctx->j, ctx->len, (&ctx->pctx)->p, N);
|
|
rop->val = 0;
|
|
_padic_poly_set_length(rop, d);
|
|
_padic_poly_normalise(rop);
|
|
}
|
|
}
|
|
|