pqc/external/flint-2.4.3/qadic/norm.c
2014-05-24 23:16:06 +02:00

114 lines
3.3 KiB
C

/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2012 Sebastian Pancratz
******************************************************************************/
#include "qadic.h"
/*
Discussion on the choice of the norm algorithm.
When the logarithm function does not converge for x,
the only choice is the resultant method.
However, when the logarithm function converges, we
can choose between the analytic method and the resultant
method. Roughly speaking, we postulate that the analytic
method has runtime A (log N)^2 mu(p,d,N), where mu(p,d,N)
is (d log d) M(N log p). The resultant method has runtime
B d^4 M(N log p). Experimentally, we find that A/B is
somewhere around 4.
TODO: Repeat the experiments with p=2, which is an
important special case.
*/
void _qadic_norm(fmpz_t rop, const fmpz *op, slong len,
const fmpz *a, const slong *j, slong lena,
const fmpz_t p, slong N)
{
const slong d = j[lena - 1];
if (len == 1)
{
fmpz_t pN;
fmpz_init(pN);
fmpz_pow_ui(pN, p, N);
fmpz_powm_ui(rop, op + 0, d, pN);
fmpz_clear(pN);
}
else
{
fmpz *y;
slong w;
y = _fmpz_vec_init(len);
/* (y,len) := 1 - (op,len) */
_fmpz_vec_neg(y, op, len);
fmpz_add_ui(y + 0, y + 0, 1);
w = _fmpz_vec_ord_p(y, len, p);
if (w >= 2 || (*p != WORD(2) && w >= 1))
{
if (4 * FLINT_FLOG2(N) * FLINT_FLOG2(N) * FLINT_FLOG2(d) < d*d*d)
{
_qadic_norm_analytic(rop, y, w, len, a, j, lena, p, N);
}
else
{
_qadic_norm_resultant(rop, op, len, a, j, lena, p, N);
}
}
else
{
_qadic_norm_resultant(rop, op, len, a, j, lena, p, N);
}
_fmpz_vec_clear(y, len);
}
}
void qadic_norm(padic_t rop, const qadic_t op, const qadic_ctx_t ctx)
{
const slong N = padic_prec(rop);
const slong d = qadic_ctx_degree(ctx);
const fmpz *p = (&ctx->pctx)->p;
/* N(p^v u) = p^{dv} N(u) */
if (qadic_is_zero(op) || d * op->val >= N)
{
padic_zero(rop);
}
else
{
_qadic_norm(padic_unit(rop), op->coeffs, op->length,
ctx->a, ctx->j, ctx->len, p, N - d * op->val);
padic_val(rop) = d * op->val;
}
}