pqc/external/flint-2.4.3/nmod_poly/mul_KS2.c
2014-05-24 23:16:06 +02:00

256 lines
7.9 KiB
C

/*=============================================================================
Copyright (C) 2007, 2008 David Harvey (zn_poly)
Copyright (C) 2013 William Hart
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=============================================================================*/
#include <stdlib.h>
#include <gmp.h>
#include "flint.h"
#include "nmod_vec.h"
#include "nmod_poly.h"
/*
Multiplication/squaring using Kronecker substitution at 2^b and -2^b.
*/
void
_nmod_poly_mul_KS2(mp_ptr res, mp_srcptr op1, slong n1,
mp_srcptr op2, slong n2, nmod_t mod)
{
int sqr, v3m_neg;
ulong bits, b, w;
slong n1o, n1e, n2o, n2e, n3o, n3e, n3, k1, k2, k3;
mp_ptr v1_buf0, v2_buf0, v1_buf1, v2_buf1, v1_buf2, v2_buf2;
mp_ptr v1o, v1e, v1p, v1m, v2o, v2e, v2p, v2m, v3o, v3e, v3p, v3m;
mp_ptr z;
if (n2 == 1)
{
/* code below needs n2 > 1, so fall back on scalar multiplication */
_nmod_vec_scalar_mul_nmod(res, op1, n1, op2[0], mod);
return;
}
sqr = (op1 == op2 && n1 == n2);
/* bits in each output coefficient */
bits = 2 * (FLINT_BITS - mod.norm) + FLINT_CLOG2(n2);
/* we're evaluating at x = B and -B, where B = 2^b, and b = ceil(bits / 2) */
b = (bits + 1) / 2;
/* number of ulongs required to store each output coefficient */
w = (2*b - 1)/FLINT_BITS + 1;
/*
Write f1(x) = f1e(x^2) + x * f1o(x^2)
f2(x) = f2e(x^2) + x * f2o(x^2)
h(x) = he(x^2) + x * ho(x^2)
"e" = even, "o" = odd
*/
n1o = n1 / 2;
n1e = n1 - n1o;
n2o = n2 / 2;
n2e = n2 - n2o;
n3 = n1 + n2 - 1; /* length of h */
n3o = n3 / 2;
n3e = n3 - n3o;
/*
f1(B) and |f1(-B)| are at most ((n1 - 1) * b + mod->bits) bits long.
However, when evaluating f1e(B^2) and B * f1o(B^2) the bitpacking
routine needs room for the last chunk of 2b bits. Therefore we need to
allow room for (n1 + 1) * b bits. Ditto for f2.
*/
k1 = ((n1 + 1)*b - 1)/FLINT_BITS + 1;
k2 = ((n2 + 1)*b - 1)/FLINT_BITS + 1;
k3 = k1 + k2;
/* allocate space */
v1_buf0 = _nmod_vec_init(3*k3); /* k1 limbs */
v2_buf0 = v1_buf0 + k1; /* k2 limbs */
v1_buf1 = v2_buf0 + k2; /* k1 limbs */
v2_buf1 = v1_buf1 + k1; /* k2 limbs */
v1_buf2 = v2_buf1 + k2; /* k1 limbs */
v2_buf2 = v1_buf2 + k1; /* k2 limbs */
/*
arrange overlapping buffers to minimise memory use
"p" = plus, "m" = minus
*/
v1e = v1_buf0;
v2e = v2_buf0;
v1o = v1_buf1;
v2o = v2_buf1;
v1p = v1_buf2;
v2p = v2_buf2;
v1m = v1_buf0;
v2m = v2_buf0;
v3m = v1_buf1;
v3p = v1_buf0;
v3e = v1_buf2;
v3o = v1_buf0;
z = _nmod_vec_init(w*n3e);
if (!sqr)
{
/* multiplication version */
/* evaluate f1e(B^2) and B * f1o(B^2) */
_nmod_poly_KS2_pack(v1e, op1, n1e, 2, 2 * b, 0, k1);
_nmod_poly_KS2_pack(v1o, op1 + 1, n1o, 2, 2 * b, b, k1);
/* evaluate f2e(B^2) and B * f2o(B^2) */
_nmod_poly_KS2_pack(v2e, op2, n2e, 2, 2 * b, 0, k2);
_nmod_poly_KS2_pack(v2o, op2 + 1, n2o, 2, 2 * b, b, k2);
/*
compute f1(B) = f1e(B^2) + B * f1o(B^2)
and f2(B) = f2e(B^2) + B * f2o(B^2)
*/
mpn_add_n(v1p, v1e, v1o, k1);
mpn_add_n(v2p, v2e, v2o, k2);
/*
compute |f1(-B)| = |f1e(B^2) - B * f1o(B^2)|
and |f2(-B)| = |f2e(B^2) - B * f2o(B^2)|
*/
v3m_neg = signed_mpn_sub_n(v1m, v1e, v1o, k1);
v3m_neg ^= signed_mpn_sub_n(v2m, v2e, v2o, k2);
/*
compute h(B) = f1(B) * f2(B)
compute |h(-B)| = |f1(-B)| * |f2(-B)|
v3m_neg is set if h(-B) is negative
*/
mpn_mul(v3m, v1m, k1, v2m, k2);
mpn_mul(v3p, v1p, k1, v2p, k2);
}
else
{
/* squaring version */
/* evaluate f1e(B^2) and B * f1o(B^2) */
_nmod_poly_KS2_pack(v1e, op1, n1e, 2, 2 * b, 0, k1);
_nmod_poly_KS2_pack(v1o, op1 + 1, n1o, 2, 2 * b, b, k1);
/* compute f1(B) = f1e(B^2) + B * f1o(B^2) */
mpn_add_n(v1p, v1e, v1o, k1);
/* compute |f1(-B)| = |f1e(B^2) - B * f1o(B^2)| */
signed_mpn_sub_n(v1m, v1e, v1o, k1);
/*
compute h(B) = f1(B)^2
compute h(-B) = f1(-B)^2
v3m_neg is cleared (since f1(-B)^2 is never negative)
*/
mpn_mul(v3m, v1m, k1, v1m, k1);
mpn_mul(v3p, v1p, k1, v1p, k1);
v3m_neg = 0;
}
/*
he(B^2) and B * ho(B^2) are both at most b * (n3 + 1) bits long (since
the coefficients don't overlap). The buffers used below are at least
b * (n1 + n2 + 2) = b * (n3 + 3) bits long. So we definitely have
enough room for 2 * he(B^2) and 2 * B * ho(B^2).
*/
/* compute 2 * he(B^2) = h(B) + h(-B) */
if (v3m_neg)
mpn_sub_n(v3e, v3p, v3m, k3);
else
mpn_add_n(v3e, v3p, v3m, k3);
/* unpack coefficients of he, and reduce mod m */
_nmod_poly_KS2_unpack(z, v3e, n3e, 2 * b, 1);
_nmod_poly_KS2_reduce(res, 2, z, n3e, w, mod);
/* compute 2 * b * ho(B^2) = h(B) - h(-B) */
if (v3m_neg)
mpn_add_n(v3o, v3p, v3m, k3);
else
mpn_sub_n(v3o, v3p, v3m, k3);
/* unpack coefficients of ho, and reduce mod m */
_nmod_poly_KS2_unpack(z, v3o, n3o, 2 * b, b + 1);
_nmod_poly_KS2_reduce(res + 1, 2, z, n3o, w, mod);
_nmod_vec_clear(z);
_nmod_vec_clear(v1_buf0);
}
void
nmod_poly_mul_KS2(nmod_poly_t res,
const nmod_poly_t poly1, const nmod_poly_t poly2)
{
slong len_out;
if ((poly1->length == 0) || (poly2->length == 0))
{
nmod_poly_zero(res);
return;
}
len_out = poly1->length + poly2->length - 1;
if (res == poly1 || res == poly2)
{
nmod_poly_t temp;
nmod_poly_init2_preinv(temp, poly1->mod.n, poly1->mod.ninv, len_out);
if (poly1->length >= poly2->length)
_nmod_poly_mul_KS2(temp->coeffs, poly1->coeffs, poly1->length,
poly2->coeffs, poly2->length,
poly1->mod);
else
_nmod_poly_mul_KS2(temp->coeffs, poly2->coeffs, poly2->length,
poly1->coeffs, poly1->length,
poly1->mod);
nmod_poly_swap(res, temp);
nmod_poly_clear(temp);
}
else
{
nmod_poly_fit_length(res, len_out);
if (poly1->length >= poly2->length)
_nmod_poly_mul_KS2(res->coeffs, poly1->coeffs, poly1->length,
poly2->coeffs, poly2->length,
poly1->mod);
else
_nmod_poly_mul_KS2(res->coeffs, poly2->coeffs, poly2->length,
poly1->coeffs, poly1->length,
poly1->mod);
}
res->length = len_out;
_nmod_poly_normalise(res);
}