245 lines
6.0 KiB
C
245 lines
6.0 KiB
C
/*=============================================================================
|
|
|
|
This file is part of FLINT.
|
|
|
|
FLINT is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
FLINT is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with FLINT; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2012 Sebastian Pancratz
|
|
Copyright (C) 2013 Mike Hansen
|
|
|
|
******************************************************************************/
|
|
|
|
|
|
#ifdef T
|
|
|
|
#include "templates.h"
|
|
|
|
/*
|
|
Include routines for vectors over \code{fmpz_poly_struct},
|
|
for use in the classical multiplication routine in the
|
|
$X$-direction.
|
|
*/
|
|
|
|
static fmpz_poly_struct *
|
|
__vec_init(slong len)
|
|
{
|
|
slong i;
|
|
fmpz_poly_struct *v;
|
|
|
|
v = flint_malloc(len * sizeof(fmpz_poly_struct));
|
|
for (i = 0; i < len; i++)
|
|
fmpz_poly_init(v + i);
|
|
return v;
|
|
}
|
|
|
|
static fmpz_poly_struct *
|
|
__vec_init2(slong len, slong n)
|
|
{
|
|
slong i;
|
|
fmpz_poly_struct *v;
|
|
|
|
v = flint_malloc(len * sizeof(fmpz_poly_struct));
|
|
for (i = 0; i < len; i++)
|
|
fmpz_poly_init2(v + i, n);
|
|
return v;
|
|
}
|
|
|
|
static void
|
|
__vec_clear(fmpz_poly_struct * v, slong len)
|
|
{
|
|
slong i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
fmpz_poly_clear(v + i);
|
|
flint_free(v);
|
|
}
|
|
|
|
static void
|
|
__scalar_addmul(fmpz_poly_struct * rop,
|
|
const fmpz_poly_struct * op, slong len, const fmpz_poly_t x)
|
|
{
|
|
slong i;
|
|
|
|
if (fmpz_poly_is_zero(x))
|
|
{
|
|
return;
|
|
}
|
|
else if (fmpz_poly_is_one(x))
|
|
{
|
|
for (i = 0; i < len; i++)
|
|
fmpz_poly_add(rop + i, rop + i, op + i);
|
|
}
|
|
else
|
|
{
|
|
fmpz_poly_t t;
|
|
|
|
fmpz_poly_init(t);
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
fmpz_poly_mul(t, op + i, x);
|
|
fmpz_poly_add(rop + i, rop + i, t);
|
|
}
|
|
fmpz_poly_clear(t);
|
|
}
|
|
}
|
|
|
|
static void
|
|
__scalar_mul(fmpz_poly_struct * rop,
|
|
const fmpz_poly_struct * op, slong len, const fmpz_poly_t x)
|
|
{
|
|
slong i;
|
|
|
|
if (fmpz_poly_is_zero(x))
|
|
{
|
|
for (i = 0; i < len; i++)
|
|
fmpz_poly_zero(rop + i);
|
|
}
|
|
else if (fmpz_poly_is_one(x))
|
|
{
|
|
for (i = 0; i < len; i++)
|
|
fmpz_poly_set(rop + i, op + i);
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; i < len; i++)
|
|
fmpz_poly_mul(rop + i, op + i, x);
|
|
}
|
|
}
|
|
|
|
static void
|
|
__sqr(fmpz_poly_struct * rop, fmpz_poly_struct * op, slong len)
|
|
{
|
|
if (len == 1)
|
|
{
|
|
fmpz_poly_sqr(rop, op);
|
|
}
|
|
else
|
|
{
|
|
slong i;
|
|
fmpz_poly_t t;
|
|
|
|
fmpz_poly_init(t);
|
|
|
|
__scalar_mul(rop, op, len, op);
|
|
|
|
__scalar_mul(rop + len, op + 1, len - 1, op + len - 1);
|
|
|
|
for (i = 1; i < len - 1; i++)
|
|
__scalar_addmul(rop + i + 1, op + 1, i - 1, op + i);
|
|
|
|
for (i = 1; i < 2 * len - 2; i++)
|
|
fmpz_poly_add(rop + i, rop + i, rop + i);
|
|
|
|
for (i = 1; i < len - 1; i++)
|
|
{
|
|
fmpz_poly_sqr(t, op + i);
|
|
fmpz_poly_add(rop + 2 * i, rop + 2 * i, t);
|
|
}
|
|
fmpz_poly_clear(t);
|
|
}
|
|
}
|
|
|
|
void
|
|
_TEMPLATE(T, poly_sqr_reorder) (TEMPLATE(T, struct) * rop,
|
|
const TEMPLATE(T, struct) * op, slong len,
|
|
const TEMPLATE(T, ctx_t) ctx)
|
|
{
|
|
const slong d = TEMPLATE(T, ctx_degree) (ctx);
|
|
|
|
fmpz_poly_struct *f, *g;
|
|
slong i, j, k, lenF;
|
|
|
|
f = __vec_init(2 * d - 1);
|
|
g = __vec_init2(d, len);
|
|
|
|
/* Convert (op, len) to (g, d) */
|
|
for (i = 0; i < len; i++)
|
|
for (j = 0; j < fmpz_poly_length(op + i); j++)
|
|
fmpz_set((g + j)->coeffs + i, (op + i)->coeffs + j);
|
|
|
|
for (j = 0; j < d; j++)
|
|
{
|
|
_fmpz_poly_set_length(g + j, len);
|
|
_fmpz_poly_normalise(g + j);
|
|
}
|
|
|
|
__sqr(f, g, d);
|
|
|
|
/* Normalise (f, len) */
|
|
lenF = 2 * d - 1;
|
|
while ((lenF) && fmpz_poly_is_zero(f + (lenF - 1)))
|
|
lenF--;
|
|
|
|
/* Reduce (f, j) using polynomial operations */
|
|
if (lenF > d)
|
|
{
|
|
for (i = lenF - 1; i >= d; i--)
|
|
{
|
|
for (k = ctx->len - 2; k >= 0; k--)
|
|
{
|
|
fmpz_poly_scalar_submul_fmpz(f + ctx->j[k] + i - d, f + i,
|
|
ctx->a + k);
|
|
}
|
|
fmpz_poly_zero(f + i);
|
|
}
|
|
}
|
|
for (j = 0; j < FLINT_MIN(d, lenF); j++)
|
|
fmpz_poly_scalar_mod_fmpz(f + j, f + j, TEMPLATE(T, ctx_prime) (ctx));
|
|
|
|
/* Convert (f, d) to (rop, 2 * len - 1) */
|
|
for (i = 0; i < 2 * len - 1; i++)
|
|
{
|
|
fmpz_poly_fit_length(rop + i, d);
|
|
_fmpz_vec_zero((rop + i)->coeffs, d);
|
|
}
|
|
for (j = 0; j < d; j++)
|
|
for (i = 0; i < fmpz_poly_length(f + j); i++)
|
|
fmpz_set((rop + i)->coeffs + j, (f + j)->coeffs + i);
|
|
for (i = 0; i < 2 * len - 1; i++)
|
|
{
|
|
_fmpz_poly_set_length(rop + i, d);
|
|
_fmpz_poly_normalise(rop + i);
|
|
}
|
|
|
|
__vec_clear(f, 2 * d - 1);
|
|
__vec_clear(g, d);
|
|
}
|
|
|
|
void
|
|
TEMPLATE(T, poly_sqr_reorder) (TEMPLATE(T, poly_t) rop,
|
|
const TEMPLATE(T, poly_t) op,
|
|
const TEMPLATE(T, ctx_t) ctx)
|
|
{
|
|
const slong len = 2 * op->length - 1;
|
|
|
|
if (op->length == 0)
|
|
{
|
|
TEMPLATE(T, poly_zero) (rop, ctx);
|
|
}
|
|
else
|
|
{
|
|
TEMPLATE(T, poly_fit_length) (rop, len, ctx);
|
|
_TEMPLATE(T, poly_sqr_reorder) (rop->coeffs, op->coeffs, op->length,
|
|
ctx);
|
|
_TEMPLATE(T, poly_set_length) (rop, len, ctx);
|
|
}
|
|
}
|
|
|
|
|
|
#endif
|