190 lines
5.1 KiB
C
190 lines
5.1 KiB
C
/*=============================================================================
|
|
|
|
This file is part of FLINT.
|
|
|
|
FLINT is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
FLINT is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with FLINT; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2011, 2012 Sebastian Pancratz
|
|
|
|
******************************************************************************/
|
|
|
|
#include "fmpz_mod_poly.h"
|
|
#include "qadic.h"
|
|
|
|
void _qadic_inv(fmpz *rop, const fmpz *op, slong len,
|
|
const fmpz *a, const slong *j, slong lena,
|
|
const fmpz_t p, slong N)
|
|
{
|
|
const slong d = j[lena - 1];
|
|
|
|
if (len == 1)
|
|
{
|
|
_padic_inv(rop, op, p, N);
|
|
_fmpz_vec_zero(rop + 1, d - 1);
|
|
}
|
|
else if (N == 1)
|
|
{
|
|
fmpz *P = _fmpz_vec_init(d + 1);
|
|
slong k;
|
|
|
|
for (k = 0; k < lena; k++)
|
|
fmpz_set(P + j[k], a + k);
|
|
|
|
_fmpz_mod_poly_invmod(rop, op, len, P, d + 1, p);
|
|
|
|
_fmpz_vec_clear(P, d + 1);
|
|
}
|
|
else /* d, N >= 2 */
|
|
{
|
|
slong *e, i, n;
|
|
fmpz *pow, *u;
|
|
fmpz *s, *t;
|
|
|
|
n = FLINT_CLOG2(N) + 1;
|
|
|
|
/* Compute sequence of exponents */
|
|
e = flint_malloc(n * sizeof(slong));
|
|
for (e[i = 0] = N; e[i] > 1; i++)
|
|
e[i + 1] = (e[i] + 1) / 2;
|
|
|
|
pow = _fmpz_vec_init(n);
|
|
u = _fmpz_vec_init(len * n);
|
|
s = _fmpz_vec_init(2 * d - 1);
|
|
t = _fmpz_vec_init(2 * d - 1);
|
|
|
|
/* Compute powers of p */
|
|
{
|
|
fmpz_one(t);
|
|
fmpz_set(pow + i, p);
|
|
}
|
|
for (i--; i >= 1; i--)
|
|
{
|
|
if (e[i] & WORD(1))
|
|
{
|
|
fmpz_mul(pow + i, t, pow + (i + 1));
|
|
fmpz_mul(t, t, t);
|
|
}
|
|
else
|
|
{
|
|
fmpz_mul(t, t, pow + (i + 1));
|
|
fmpz_mul(pow + i, pow + (i + 1), pow + (i + 1));
|
|
}
|
|
}
|
|
{
|
|
if (e[i] & WORD(1))
|
|
fmpz_mul(pow + i, t, pow + (i + 1));
|
|
else
|
|
fmpz_mul(pow + i, pow + (i + 1), pow + (i + 1));
|
|
}
|
|
|
|
/* Compute reduced units */
|
|
{
|
|
_fmpz_vec_scalar_mod_fmpz(u + 0 * len, op, len, pow + 0);
|
|
}
|
|
for (i = 1; i < n; i++)
|
|
{
|
|
_fmpz_vec_scalar_mod_fmpz(u + i * len, u + (i - 1) * len, len, pow + i);
|
|
}
|
|
|
|
/* Run Newton iteration */
|
|
i = n - 1;
|
|
{
|
|
fmpz *P = _fmpz_vec_init(d + 1);
|
|
slong k;
|
|
|
|
for (k = 0; k < lena; k++)
|
|
fmpz_set(P + j[k], a + k);
|
|
|
|
_fmpz_mod_poly_invmod(rop, u + i * len, len, P, d + 1, pow + i);
|
|
|
|
_fmpz_vec_clear(P, d + 1);
|
|
}
|
|
for (i--; i >= 0; i--) /* z' := 2 z - a z^2 */
|
|
{
|
|
_fmpz_poly_sqr(s, rop, d);
|
|
_fmpz_poly_reduce(s, 2 * d - 1, a, j, lena);
|
|
|
|
_fmpz_poly_mul(t, s, d, u + i * len, len);
|
|
_fmpz_poly_reduce(t, d + len - 1, a, j, lena);
|
|
|
|
_fmpz_vec_scalar_mul_2exp(rop, rop, d, 1);
|
|
_fmpz_poly_sub(rop, rop, d, t, d);
|
|
_fmpz_vec_scalar_mod_fmpz(rop, rop, d, pow + i);
|
|
}
|
|
|
|
_fmpz_vec_clear(pow, n);
|
|
_fmpz_vec_clear(u, len * n);
|
|
_fmpz_vec_clear(s, 2 * d - 1);
|
|
_fmpz_vec_clear(t, 2 * d - 1);
|
|
flint_free(e);
|
|
}
|
|
}
|
|
|
|
void qadic_inv(qadic_t x, const qadic_t y, const qadic_ctx_t ctx)
|
|
{
|
|
const slong N = qadic_prec(x);
|
|
|
|
if (qadic_is_zero(y))
|
|
{
|
|
flint_printf("Exception (qadic_inv). Zero is not invertible.\n");
|
|
abort();
|
|
}
|
|
|
|
/*
|
|
If y = u p^v has negative valuation with N <= -v then the
|
|
exact inverse of y is zero when reduced modulo $p^N$
|
|
*/
|
|
if (N + y->val <= 0)
|
|
{
|
|
qadic_zero(x);
|
|
}
|
|
else
|
|
{
|
|
const slong d = qadic_ctx_degree(ctx);
|
|
fmpz *t;
|
|
|
|
if (x == y)
|
|
{
|
|
t = _fmpz_vec_init(d);
|
|
}
|
|
else
|
|
{
|
|
padic_poly_fit_length(x, d);
|
|
t = x->coeffs;
|
|
}
|
|
|
|
_qadic_inv(t, y->coeffs, y->length,
|
|
ctx->a, ctx->j, ctx->len, (&ctx->pctx)->p, N + y->val);
|
|
x->val = - y->val;
|
|
|
|
if (x == y)
|
|
{
|
|
_fmpz_vec_clear(x->coeffs, x->alloc);
|
|
x->coeffs = t;
|
|
x->alloc = d;
|
|
x->length = d;
|
|
}
|
|
else
|
|
{
|
|
_padic_poly_set_length(x, d);
|
|
}
|
|
_padic_poly_normalise(x);
|
|
}
|
|
}
|
|
|