192 lines
5.5 KiB
C
192 lines
5.5 KiB
C
/*=============================================================================
|
|
|
|
This file is part of FLINT.
|
|
|
|
FLINT is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
FLINT is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with FLINT; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2007 David Howden
|
|
Copyright (C) 2007, 2008, 2009, 2010 William Hart
|
|
Copyright (C) 2008 Richard Howell-Peak
|
|
Copyright (C) 2011 Fredrik Johansson
|
|
|
|
******************************************************************************/
|
|
|
|
#include <stdio.h>
|
|
#include <gmp.h>
|
|
#include <math.h>
|
|
#include "flint.h"
|
|
#include "nmod_poly.h"
|
|
#include "ulong_extras.h"
|
|
|
|
#define ZASSENHAUS 0
|
|
#define BERLEKAMP 1
|
|
#define KALTOFEN 2
|
|
|
|
static __inline__ void
|
|
__nmod_poly_factor1(nmod_poly_factor_t res, const nmod_poly_t f, int algorithm)
|
|
{
|
|
if (algorithm == KALTOFEN)
|
|
nmod_poly_factor_kaltofen_shoup(res, f);
|
|
else if (algorithm == ZASSENHAUS)
|
|
nmod_poly_factor_cantor_zassenhaus(res, f);
|
|
else
|
|
nmod_poly_factor_berlekamp(res, f);
|
|
}
|
|
|
|
mp_limb_t
|
|
__nmod_poly_factor(nmod_poly_factor_t result,
|
|
const nmod_poly_t input, int algorithm)
|
|
{
|
|
nmod_poly_t monic_input;
|
|
nmod_poly_factor_t sqfree_factors, factors;
|
|
mp_limb_t leading_coeff;
|
|
slong i, len;
|
|
|
|
len = input->length;
|
|
|
|
if (len <= 1)
|
|
{
|
|
if (len == 0)
|
|
return 0;
|
|
else
|
|
return input->coeffs[0];
|
|
}
|
|
|
|
leading_coeff = *nmod_poly_lead(input);
|
|
|
|
nmod_poly_init_preinv(monic_input, input->mod.n, input->mod.ninv);
|
|
nmod_poly_make_monic(monic_input, input);
|
|
|
|
if (len == 2)
|
|
{
|
|
nmod_poly_factor_insert(result, monic_input, 1);
|
|
nmod_poly_clear(monic_input);
|
|
return input->coeffs[1];
|
|
}
|
|
|
|
nmod_poly_factor_init(sqfree_factors);
|
|
nmod_poly_factor_squarefree(sqfree_factors, monic_input);
|
|
nmod_poly_clear(monic_input);
|
|
|
|
/* Run CZ on each of the square-free factors */
|
|
for (i = 0; i < sqfree_factors->num; i++)
|
|
{
|
|
nmod_poly_factor_init(factors);
|
|
__nmod_poly_factor1(factors, sqfree_factors->p + i, algorithm);
|
|
nmod_poly_factor_pow(factors, sqfree_factors->exp[i]);
|
|
nmod_poly_factor_concat(result, factors);
|
|
nmod_poly_factor_clear(factors);
|
|
}
|
|
|
|
nmod_poly_factor_clear(sqfree_factors);
|
|
return leading_coeff;
|
|
}
|
|
|
|
mp_limb_t
|
|
__nmod_poly_factor_deflation(nmod_poly_factor_t result,
|
|
const nmod_poly_t input, int algorithm)
|
|
{
|
|
slong i;
|
|
ulong deflation;
|
|
|
|
if (input->length <= 1)
|
|
{
|
|
if (input->length == 0)
|
|
return 0;
|
|
else
|
|
return input->coeffs[0];
|
|
}
|
|
|
|
deflation = nmod_poly_deflation(input);
|
|
if (deflation == 1)
|
|
{
|
|
return __nmod_poly_factor(result, input, algorithm);
|
|
}
|
|
else
|
|
{
|
|
nmod_poly_factor_t def_res;
|
|
nmod_poly_t def;
|
|
mp_limb_t leading_coeff;
|
|
|
|
nmod_poly_init_preinv(def, input->mod.n, input->mod.ninv);
|
|
nmod_poly_deflate(def, input, deflation);
|
|
nmod_poly_factor_init(def_res);
|
|
leading_coeff = __nmod_poly_factor(def_res, def, algorithm);
|
|
nmod_poly_clear(def);
|
|
|
|
for (i = 0; i < def_res->num; i++)
|
|
{
|
|
/* Inflate */
|
|
nmod_poly_t pol;
|
|
nmod_poly_init_preinv(pol, input->mod.n, input->mod.ninv);
|
|
nmod_poly_inflate(pol, def_res->p + i, deflation);
|
|
|
|
/* Factor inflation */
|
|
if (def_res->exp[i] == 1)
|
|
__nmod_poly_factor(result, pol, algorithm);
|
|
else
|
|
{
|
|
nmod_poly_factor_t t;
|
|
nmod_poly_factor_init(t);
|
|
__nmod_poly_factor(t, pol, algorithm);
|
|
nmod_poly_factor_pow(t, def_res->exp[i]);
|
|
nmod_poly_factor_concat(result, t);
|
|
nmod_poly_factor_clear(t);
|
|
}
|
|
nmod_poly_clear(pol);
|
|
}
|
|
|
|
nmod_poly_factor_clear(def_res);
|
|
return leading_coeff;
|
|
}
|
|
}
|
|
|
|
mp_limb_t
|
|
nmod_poly_factor_with_berlekamp(nmod_poly_factor_t result,
|
|
const nmod_poly_t input)
|
|
{
|
|
return __nmod_poly_factor_deflation(result, input, BERLEKAMP);
|
|
}
|
|
|
|
mp_limb_t
|
|
nmod_poly_factor_with_cantor_zassenhaus(nmod_poly_factor_t result,
|
|
const nmod_poly_t input)
|
|
{
|
|
return __nmod_poly_factor_deflation(result, input, ZASSENHAUS);
|
|
}
|
|
|
|
mp_limb_t
|
|
nmod_poly_factor_with_kaltofen_shoup(nmod_poly_factor_t result,
|
|
const nmod_poly_t input)
|
|
{
|
|
return __nmod_poly_factor_deflation(result, input, KALTOFEN);
|
|
}
|
|
|
|
mp_limb_t
|
|
nmod_poly_factor(nmod_poly_factor_t result, const nmod_poly_t input)
|
|
{
|
|
mp_limb_t p = input->mod.n;
|
|
unsigned int bits = FLINT_BIT_COUNT (p);
|
|
slong n = nmod_poly_degree(input);
|
|
|
|
if (n < 10 + 50 / bits)
|
|
return __nmod_poly_factor_deflation(result, input, ZASSENHAUS);
|
|
else
|
|
return __nmod_poly_factor_deflation(result, input, KALTOFEN);
|
|
}
|