195 lines
5.0 KiB
C
195 lines
5.0 KiB
C
/*=============================================================================
|
|
|
|
This file is part of FLINT.
|
|
|
|
FLINT is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
FLINT is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with FLINT; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2008, 2009 William Hart
|
|
Copyright (C) 2010 Sebastian Pancratz
|
|
Copyright (C) 2012 Fredrik Johansson
|
|
|
|
******************************************************************************/
|
|
|
|
#include <stdlib.h>
|
|
#include <gmp.h>
|
|
#include "flint.h"
|
|
#include "fmpz.h"
|
|
#include "fmpz_vec.h"
|
|
#include "fmpz_poly.h"
|
|
|
|
|
|
static void
|
|
__fmpz_poly_divrem_divconquer(fmpz * Q, fmpz * R,
|
|
const fmpz * A, slong lenA,
|
|
const fmpz * B, slong lenB)
|
|
{
|
|
if (lenA < 2 * lenB - 1)
|
|
{
|
|
/*
|
|
Convert unbalanced division into a 2 n1 - 1 by n1 division
|
|
*/
|
|
|
|
const slong n1 = lenA - lenB + 1;
|
|
const slong n2 = lenB - n1;
|
|
|
|
const fmpz * p1 = A + n2;
|
|
const fmpz * d1 = B + n2;
|
|
const fmpz * d2 = B;
|
|
|
|
fmpz * W = _fmpz_vec_init((2 * n1 - 1) + lenB - 1);
|
|
|
|
fmpz * d1q1 = R + n2;
|
|
fmpz * d2q1 = W + (2 * n1 - 1);
|
|
|
|
_fmpz_poly_divrem_divconquer_recursive(Q, d1q1, W, p1, d1, n1);
|
|
|
|
/*
|
|
Compute d2q1 = Q d2, of length lenB - 1
|
|
*/
|
|
|
|
if (n1 >= n2)
|
|
_fmpz_poly_mul(d2q1, Q, n1, d2, n2);
|
|
else
|
|
_fmpz_poly_mul(d2q1, d2, n2, Q, n1);
|
|
|
|
/*
|
|
Compute BQ = d1q1 * x^n1 + d2q1, of length lenB - 1;
|
|
then compute R = A - BQ
|
|
*/
|
|
|
|
_fmpz_vec_swap(R, d2q1, n2);
|
|
_fmpz_vec_add(R + n2, R + n2, d2q1 + n2, n1 - 1);
|
|
_fmpz_vec_sub(R, A, R, lenA);
|
|
|
|
_fmpz_vec_clear(W, (2 * n1 - 1) + lenB - 1);
|
|
}
|
|
else /* lenA = 2 * lenB - 1 */
|
|
{
|
|
fmpz * W = _fmpz_vec_init(lenA);
|
|
|
|
_fmpz_poly_divrem_divconquer_recursive(Q, R, W, A, B, lenB);
|
|
_fmpz_vec_sub(R, A, R, lenA);
|
|
|
|
_fmpz_vec_clear(W, lenA);
|
|
}
|
|
}
|
|
|
|
void _fmpz_poly_divrem_divconquer(fmpz *Q, fmpz *R,
|
|
const fmpz *A, slong lenA,
|
|
const fmpz *B, slong lenB)
|
|
{
|
|
if (lenA <= 2 * lenB - 1)
|
|
{
|
|
__fmpz_poly_divrem_divconquer(Q, R, A, lenA, B, lenB);
|
|
}
|
|
else /* lenA > 2 * lenB - 1 */
|
|
{
|
|
slong shift, n = 2 * lenB - 1;
|
|
fmpz *QB, *W;
|
|
|
|
_fmpz_vec_set(R, A, lenA);
|
|
W = _fmpz_vec_init(2 * n);
|
|
QB = W + n;
|
|
|
|
while (lenA >= n)
|
|
{
|
|
shift = lenA - n;
|
|
_fmpz_poly_divrem_divconquer_recursive(Q + shift, QB,
|
|
W, R + shift, B, lenB);
|
|
_fmpz_vec_sub(R + shift, R + shift, QB, n);
|
|
lenA -= lenB;
|
|
}
|
|
|
|
if (lenA >= lenB)
|
|
{
|
|
__fmpz_poly_divrem_divconquer(Q, W, R, lenA, B, lenB);
|
|
_fmpz_vec_swap(W, R, lenA);
|
|
}
|
|
|
|
_fmpz_vec_clear(W, 2 * n);
|
|
}
|
|
}
|
|
|
|
void
|
|
fmpz_poly_divrem_divconquer(fmpz_poly_t Q, fmpz_poly_t R,
|
|
const fmpz_poly_t A, const fmpz_poly_t B)
|
|
{
|
|
const slong lenA = A->length;
|
|
const slong lenB = B->length;
|
|
fmpz_poly_t tQ, tR;
|
|
fmpz *q, *r;
|
|
|
|
if (lenB == 0)
|
|
{
|
|
flint_printf("Exception (fmpz_poly_divrem_divconquer). Division by zero.\n");
|
|
abort();
|
|
}
|
|
|
|
if (lenA < lenB)
|
|
{
|
|
fmpz_poly_set(R, A);
|
|
fmpz_poly_zero(Q);
|
|
return;
|
|
}
|
|
|
|
if (Q == A || Q == B)
|
|
{
|
|
fmpz_poly_init2(tQ, lenA - lenB + 1);
|
|
q = tQ->coeffs;
|
|
}
|
|
else
|
|
{
|
|
fmpz_poly_fit_length(Q, lenA - lenB + 1);
|
|
q = Q->coeffs;
|
|
}
|
|
|
|
if (R == A || R == B)
|
|
{
|
|
fmpz_poly_init2(tR, lenA);
|
|
r = tR->coeffs;
|
|
}
|
|
else
|
|
{
|
|
fmpz_poly_fit_length(R, lenA);
|
|
r = R->coeffs;
|
|
}
|
|
|
|
_fmpz_poly_divrem_divconquer(q, r, A->coeffs, lenA, B->coeffs, lenB);
|
|
|
|
if (Q == A || Q == B)
|
|
{
|
|
_fmpz_poly_set_length(tQ, lenA - lenB + 1);
|
|
fmpz_poly_swap(tQ, Q);
|
|
fmpz_poly_clear(tQ);
|
|
}
|
|
else
|
|
_fmpz_poly_set_length(Q, lenA - lenB + 1);
|
|
|
|
if (R == A || R == B)
|
|
{
|
|
_fmpz_poly_set_length(tR, lenA);
|
|
fmpz_poly_swap(tR, R);
|
|
fmpz_poly_clear(tR);
|
|
}
|
|
else
|
|
_fmpz_poly_set_length(R, lenA);
|
|
|
|
_fmpz_poly_normalise(Q);
|
|
_fmpz_poly_normalise(R);
|
|
}
|