pqc/external/flint-2.4.3/flintxx/vector.h

462 lines
13 KiB
C++

/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2013 Tom Bachmann
******************************************************************************/
// Sketch of a generic vector class.
#ifndef CXX_VECTOR_H
#define CXX_VECTOR_H
#include <string>
#include <sstream>
#include "expression.h"
#include "evaluation_tools.h"
#include "ltuple.h"
#include "mp.h"
namespace flint {
FLINT_DEFINE_BINOP(vector_at)
template<class Underlying_traits, class Operation, class Data>
class vector_expression;
namespace detail {
template<class Traits>
struct vector_wrapper : derived_wrapper2<vector_expression, Traits> { };
template<class Idx, class Operation, class Expr, class Traits>
struct vector_at_traits
{
typedef FLINT_BINOP_ENABLE_RETTYPE(vector_at, Expr, Idx) ref_t;
typedef ref_t cref_t;
static ref_t at(const Expr& v, Idx i)
{return vector_at(v, i);}
};
template<class Idx, class Expr, class Traits>
struct vector_at_traits<Idx, operations::immediate, Expr, Traits>
: Traits { };
}
template<class Underlying_traits, class Operation, class Data>
class vector_expression
: public expression<detail::vector_wrapper<Underlying_traits>, Operation, Data>
{
public:
typedef expression<detail::vector_wrapper<Underlying_traits>,
Operation, Data> base_t;
typedef typename Underlying_traits::ref_t ref_t;
typedef typename Underlying_traits::cref_t cref_t;
typedef typename Underlying_traits::idx_t idx_t;
typedef typename Underlying_traits::underlying_t underlying_t;
typedef typename Underlying_traits::arrayref_t arrayref_t;
typedef typename Underlying_traits::arraysrcref_t arraysrcref_t;
vector_expression() {}
template<class T>
explicit vector_expression(const T& t) : base_t(t) {}
template<class T, class U>
vector_expression(const T& t, const U& u) : base_t(t, u) {}
template<class T, class U, class V>
vector_expression(const T& t, const U& u, const V& v)
: base_t(t, u, v) {}
template<class T>
vector_expression& operator=(const T& t)
{
this->set(t);
return *this;
}
template<class Idx>
typename detail::vector_at_traits<Idx, Operation, vector_expression,
Underlying_traits>::ref_t operator[](Idx idx)
{
return detail::vector_at_traits<Idx, Operation, vector_expression,
Underlying_traits>::at(*this, idx);
}
template<class Idx>
typename detail::vector_at_traits<Idx, Operation, vector_expression,
Underlying_traits>::cref_t operator[](Idx idx) const
{
return detail::vector_at_traits<Idx, Operation, vector_expression,
Underlying_traits>::at(*this, idx);
}
idx_t size() const {return Underlying_traits::size(*this);}
arrayref_t _array() {return Underlying_traits::array(*this);}
arraysrcref_t _array() const {return Underlying_traits::array(*this);}
typename base_t::evaluated_t create_temporary() const
{
return Underlying_traits::create_temporary(*this);
}
protected:
explicit vector_expression(const Data& d) : base_t(d) {}
template<class D, class O, class Da>
friend class expression;
};
namespace vectors {
// Similar to matrices, the size of a vector expression has to be known in
// order to allocate temporary objects. In this case, the generic
// implementation looks for any vector immediate subexpression and returs its
// size. This makes sense since mixing vectors of differing sizes usually makes
// no sense.
// Thus specialisation is usually only necessary in constructor-like operations,
// which do not involve vector immediates.
template<class Operation>
struct outsize
{
template<class Expr>
static unsigned get(const Expr& e)
{
return tools::find_subexpr_T<typename Expr::evaluated_t>(e)._data().size;
}
};
// Hack for ltuple_get, similar to the matrices case.
template<unsigned n>
struct outsize<operations::ltuple_get_op<n> >
{
template<class Expr>
static unsigned get(const Expr& e)
{
return outsize<typename Expr::data_t::head_t::operation_t>::get(
e._data().head);
}
};
}
namespace detail {
template<class T, class Ref, class Cref, class ArrayT>
struct basic_vector_traits
{
typedef unsigned idx_t;
typedef Ref ref_t;
typedef const Cref cref_t;
typedef T underlying_t;
typedef ArrayT* arrayref_t;
typedef const ArrayT* arraysrcref_t;
template<class Expr>
static ref_t at(Expr& e, unsigned i)
{
return e.evaluate()._data().array[i];
}
template<class Expr>
static cref_t at(const Expr& e, unsigned i)
{
return e.evaluate()._data().array[i];
}
template<class Expr>
static arrayref_t array(Expr& e)
{
return e.evaluate()._data().array;
}
template<class Expr>
static arraysrcref_t array(const Expr& e)
{
return e.evaluate()._data().array;
}
};
template<class T, class Ref = T&, class Cref = const T&, class ArrayT = T>
struct rtfixed_size_traits
: basic_vector_traits<T, Ref, Cref, ArrayT>
{
template<class Expr>
static unsigned size(const Expr& e)
{
return vectors::outsize<typename Expr::operation_t>::get(e);
}
template<class Expr>
static typename Expr::evaluated_t create_temporary(const Expr& e)
{
return typename Expr::evaluated_t(e.size());
}
};
template<class T, class Ref = T&, class Cref = const T&, class ArrayT = T>
struct fixed_size_traits
: basic_vector_traits<T, Ref, Cref, ArrayT>
{
template<class Expr>
static unsigned size(const Expr& e)
{
return Expr::evaluated_t::data_t::size;
}
template<class Expr>
static typename Expr::evaluated_t create_temporary(const Expr& e)
{
return typename Expr::evaluated_t();
}
};
template<class T, class Size, class Ref, class Cref, class ArrayT>
struct wrapped_vector_traits
: rtfixed_size_traits<T, Ref, Cref, ArrayT>
{
typedef Size idx_t;
template<class Expr>
static Ref at(Expr& e, idx_t i)
{
return e.evaluate()._data().at(i);
}
template<class Expr>
static Cref at(const Expr& e, idx_t i)
{
return e.evaluate()._data().at(i);
}
};
template<class T>
struct rtfixed_size_data
{
const unsigned size;
T* array;
rtfixed_size_data(unsigned n)
: size(n), array(new T[n]) {}
~rtfixed_size_data() {delete[] array;}
rtfixed_size_data(const rtfixed_size_data& o)
: size(o.size)
{
// TODO this is very non-optimal ... (?)
array = new T[size];
for(unsigned i = 0;i < size;++i)
{
array[i] = o.array[i];
}
}
};
template<class T, unsigned n>
struct fixed_size_data
{
static const unsigned size = n;
T array[n];
};
} // detail
template<class T>
struct make_vector
{
typedef vector_expression<detail::rtfixed_size_traits<T>,
operations::immediate, detail::rtfixed_size_data<T> > type;
};
template<class T, unsigned n>
struct make_vector_n
{
typedef vector_expression<detail::fixed_size_traits<T>,
operations::immediate, detail::fixed_size_data<T, n> > type;
};
template<class Expr>
struct enable_vector_rules : mp::false_ { };
template<class Traits, class Data>
struct enable_vector_rules<
vector_expression<Traits, operations::immediate, Data> >
: mp::true_ { };
namespace rules {
// temporary allocation inside ltuples
template<class Operation, class Data, class U,
class Traits, class Op, class Da>
struct instantiate_temporaries<ltuple_expression<U, Operation, Data>,
vector_expression<Traits, Op, Da> >
{
typedef ltuple_expression<U, Operation, Data> Expr;
typedef vector_expression<Traits, Op, Da> T;
static T get(const Expr& e)
{
return T(vectors::outsize<Operation>::get(e));
}
};
template<class Traits, class Data, class T>
struct binary_expression<vector_expression<Traits, operations::immediate, Data>,
operations::vector_at_op, T>
{
typedef typename Traits::underlying_t return_t;
template<class V>
static void doit(V& to,
const vector_expression<Traits, operations::immediate, Data>& v,
T i)
{
to = Traits::at(v, i);
}
};
template<class Expr>
struct to_string<Expr, typename mp::enable_if<mp::and_<
enable_vector_rules<Expr>,
traits::is_implemented<to_string<typename Expr::underlying_t> > > >::type>
{
static std::string get(const Expr& e, int base)
{
// TODO inefficient
std::string res = "(";
for(typename Expr::idx_t i = 0;i < e.size();++i)
{
res += e[i].to_string();
if(i != e.size() - 1)
res += ", ";
}
res += ")";
return res;
}
};
template<class Expr>
struct equals<Expr, Expr,
typename mp::enable_if<enable_vector_rules<Expr> >::type>
{
static bool get(const Expr& e1, const Expr& e2)
{
if(e1.size() != e2.size())
return false;
for(typename Expr::idx_t i = 0;i < e1.size();++i)
if(e1[i] != e2[i])
return false;
return true;
}
};
namespace rvdetail {
template<class Tuple>
struct translate_data;
template<class Expr, class enable = void>
struct translate_expr
{
typedef translate_data<typename Expr::data_t> trdata_t;
typedef typename Expr::underlying_t ul_t;
typedef typename ul_t::template make_helper<
typename Expr::operation_t, typename trdata_t::type> make_helper;
typedef typename make_helper::type type;
template<class Idx>
static type make(const Expr& e, Idx idx)
{
return make_helper::make(trdata_t::make(e._data(), idx));
}
};
template<class Expr>
struct translate_expr<Expr,
typename mp::enable_if<traits::is_immediate<Expr> >::type>
{
typedef typename Expr::cref_t type;
template<class Idx>
static type make(const Expr& e, Idx idx)
{
return e[idx];
}
};
template<class Head, class Tail>
struct translate_data<tuple<Head, Tail> >
{
typedef translate_expr<typename traits::basetype<Head>::type> trexpr;
typedef translate_data<Tail> trtail;
typedef tuple<typename trexpr::type, typename trtail::type> type;
template<class Idx>
static type make(const tuple<Head, Tail>& e, Idx idx)
{
return type(trexpr::make(e.head, idx), trtail::make(e.tail, idx));
}
};
template<>
struct translate_data<empty_tuple>
{
typedef empty_tuple type;
template<class Idx>
static type make(empty_tuple, Idx) {return empty_tuple();}
};
template<class Data, class Enable = void>
struct enable_evaluation : mp::false_ {typedef void vector_t;};
template<class Data>
struct enable_evaluation<Data,
typename mp::enable_if<traits::is_expression<
typename traits::basetype<Data>::type> >::type>
: enable_vector_rules<typename traits::basetype<Data>::type::evaluated_t>
{
typedef typename traits::basetype<Data>::type::evaluated_t vector_t;
};
template<class Head, class Tail>
struct enable_evaluation<tuple<Head, Tail> >
: mp::and_<enable_evaluation<Head>, enable_evaluation<Tail> >
{
typedef typename enable_evaluation<Head>::vector_t vector_t;
};
template<>
struct enable_evaluation<empty_tuple>
: mp::true_ { };
} //rvdetail
// TODO this is a bit greedy ..
template<class Op, class Data, bool result_is_temporary>
struct evaluation<Op, Data, result_is_temporary, 1,
typename mp::enable_if<rvdetail::enable_evaluation<Data> >::type>
{
typedef rvdetail::translate_data<Data> translator;
typedef typename translator::type trdata_t;
typedef typename mp::find_evaluation<
Op, trdata_t, result_is_temporary>::type rule_t;
typedef typename rvdetail::enable_evaluation<Data>::vector_t vector_t;
typedef typename vector_t::evaluated_t return_t; // TODO
typedef typename rule_t::temporaries_t temporaries_t;
typedef typename rule_t::return_t trreturn_t;
template<class Return>
static void doit(const Data& input, temporaries_t temps, Return* output)
{
for(typename return_t::idx_t i = 0;i < output->size();++i)
{
rule_t::doit(translator::make(input, i), temps, &((*output)[i]));
}
}
};
// TODO scalar multiplication etc
} // rules
} // flint
#endif