185 lines
4.4 KiB
C
185 lines
4.4 KiB
C
/*=============================================================================
|
|
|
|
This file is part of FLINT.
|
|
|
|
FLINT is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
FLINT is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with FLINT; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2008 Peter Shrimpton
|
|
Copyright (C) 2009 William Hart
|
|
|
|
******************************************************************************/
|
|
|
|
#include <gmp.h>
|
|
#include "flint.h"
|
|
#include "ulong_extras.h"
|
|
|
|
n_pair_t
|
|
lchain_precomp(mp_limb_t m, mp_limb_t a, mp_limb_t n, double npre)
|
|
{
|
|
n_pair_t current = {0, 0}, old;
|
|
int length, i;
|
|
mp_limb_t power, xy, xx, yy;
|
|
|
|
old.x = UWORD(2);
|
|
old.y = a;
|
|
|
|
length = FLINT_BIT_COUNT(m);
|
|
power = (UWORD(1) << (length - 1));
|
|
|
|
for (i = 0; i < length; i++)
|
|
{
|
|
xy = n_submod(n_mulmod_precomp(old.x, old.y, n, npre), a, n);
|
|
|
|
if (m & power)
|
|
{
|
|
yy = n_submod(n_mulmod_precomp(old.y, old.y, n, npre), UWORD(2), n);
|
|
current.x = xy;
|
|
current.y = yy;
|
|
}
|
|
else
|
|
{
|
|
xx = n_submod(n_mulmod_precomp(old.x, old.x, n, npre), UWORD(2), n);
|
|
current.x = xx;
|
|
current.y = xy;
|
|
}
|
|
|
|
power >>= 1;
|
|
old = current;
|
|
}
|
|
|
|
return current;
|
|
}
|
|
|
|
n_pair_t
|
|
lchain2_preinv(mp_limb_t m, mp_limb_t a, mp_limb_t n, mp_limb_t ninv)
|
|
{
|
|
n_pair_t current = {0, 0}, old;
|
|
int length, i;
|
|
mp_limb_t power, xy, xx, yy;
|
|
|
|
old.x = UWORD(2);
|
|
old.y = a;
|
|
|
|
length = FLINT_BIT_COUNT(m);
|
|
power = (UWORD(1) << (length - 1));
|
|
|
|
for (i = 0; i < length; i++)
|
|
{
|
|
xy = n_submod(n_mulmod2_preinv(old.x, old.y, n, ninv), a, n);
|
|
|
|
if (m & power)
|
|
{
|
|
yy = n_submod(n_mulmod2_preinv(old.y, old.y, n, ninv), UWORD(2), n);
|
|
current.x = xy;
|
|
current.y = yy;
|
|
}
|
|
else
|
|
{
|
|
xx = n_submod(n_mulmod2_preinv(old.x, old.x, n, ninv), UWORD(2), n);
|
|
current.x = xx;
|
|
current.y = xy;
|
|
}
|
|
|
|
power >>= 1;
|
|
old = current;
|
|
}
|
|
|
|
return current;
|
|
}
|
|
|
|
int
|
|
n_is_probabprime_lucas(mp_limb_t n)
|
|
{
|
|
int i, D, Q;
|
|
mp_limb_t A;
|
|
mp_limb_t left, right;
|
|
n_pair_t V;
|
|
|
|
D = 0;
|
|
Q = 0;
|
|
|
|
if (((n % 2) == 0) || (FLINT_ABS((mp_limb_signed_t) n) <= 2))
|
|
{
|
|
return (n == UWORD(2));
|
|
}
|
|
|
|
for (i = 0; i < 100; i++)
|
|
{
|
|
D = 5 + 2 * i;
|
|
if (n_gcd(D, n % D) != UWORD(1))
|
|
{
|
|
if (n == D)
|
|
continue;
|
|
else
|
|
return 0;
|
|
}
|
|
if (i % 2 == 1)
|
|
D = -D;
|
|
if (n_jacobi(D, n) == -1)
|
|
break;
|
|
}
|
|
|
|
if (i == 100)
|
|
{
|
|
return (n_is_square(n) ? -1 : 1);
|
|
}
|
|
|
|
Q = (1 - D) / 4;
|
|
if (Q < 0)
|
|
{
|
|
if (n < UWORD(52))
|
|
{
|
|
while (Q < 0)
|
|
Q += n;
|
|
A = n_submod(n_invmod(Q, n), UWORD(2), n);
|
|
}
|
|
else
|
|
A = n_submod(n_invmod(Q + n, n), UWORD(2), n);
|
|
}
|
|
else
|
|
{
|
|
if (n < UWORD(52))
|
|
{
|
|
while (Q >= n)
|
|
Q -= n;
|
|
A = n_submod(n_invmod(Q, n), UWORD(2), n);
|
|
}
|
|
else
|
|
A = n_submod(n_invmod(Q, n), UWORD(2), n);
|
|
}
|
|
|
|
if (FLINT_BIT_COUNT(n) <= FLINT_D_BITS)
|
|
{
|
|
double npre = n_precompute_inverse(n);
|
|
V = lchain_precomp(n + 1, A, n, npre);
|
|
|
|
left = n_mulmod_precomp(A, V.x, n, npre);
|
|
right = n_mulmod_precomp(2, V.y, n, npre);
|
|
}
|
|
else
|
|
{
|
|
mp_limb_t ninv = n_preinvert_limb(n);
|
|
V = lchain2_preinv(n + 1, A, n, ninv);
|
|
|
|
left = n_mulmod_precomp(A, V.x, n, ninv);
|
|
right = n_mulmod_precomp(2, V.y, n, ninv);
|
|
}
|
|
|
|
return (left == right);
|
|
}
|