100 lines
2.8 KiB
C
100 lines
2.8 KiB
C
/*=============================================================================
|
|
|
|
This file is part of FLINT.
|
|
|
|
FLINT is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
FLINT is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with FLINT; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2008 Peter Shrimpton
|
|
Copyright (C) 2009 William Hart
|
|
|
|
******************************************************************************/
|
|
|
|
#include <gmp.h>
|
|
#define ulong ulongxx /* interferes with system includes */
|
|
#include <stdlib.h>
|
|
#undef ulong
|
|
#define ulong mp_limb_t
|
|
#include "flint.h"
|
|
#include "ulong_extras.h"
|
|
|
|
int
|
|
n_is_prime_pocklington(mp_limb_t n, ulong iterations)
|
|
{
|
|
int i, j, pass;
|
|
mp_limb_t n1, cofactor, b, c = 0, ninv, limit;
|
|
n_factor_t factors;
|
|
|
|
if (n % 2 == 0)
|
|
{
|
|
return (n == UWORD(2));
|
|
}
|
|
|
|
n1 = n - 1;
|
|
|
|
n_factor_init(&factors);
|
|
|
|
limit = n_sqrt(n1);
|
|
cofactor = n_factor_partial(&factors, n1, limit, 1);
|
|
|
|
if (cofactor != 1) /* check that cofactor is coprime to factors found */
|
|
{
|
|
for (i = 0; i < factors.num; i++)
|
|
{
|
|
if (factors.p[i] > FLINT_FACTOR_TRIAL_PRIMES_PRIME)
|
|
{
|
|
while (cofactor >= factors.p[i] && (cofactor % factors.p[i]) == 0)
|
|
{
|
|
factors.exp[i]++;
|
|
cofactor /= factors.p[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ninv = n_preinvert_limb(n);
|
|
|
|
c = 1;
|
|
for (i = factors.num - 1; i >= 0; i--)
|
|
{
|
|
mp_limb_t exp = n1 / factors.p[i];
|
|
pass = 0;
|
|
|
|
for (j = 2; j < iterations && pass == 0; j++)
|
|
{
|
|
b = n_powmod2_preinv(j, exp, n, ninv);
|
|
if (n_powmod2_ui_preinv(b, factors.p[i], n, ninv) != UWORD(1))
|
|
return 0;
|
|
|
|
b = n_submod(b, UWORD(1), n);
|
|
if (b != UWORD(0))
|
|
{
|
|
c = n_mulmod2_preinv(c, b, n, ninv);
|
|
pass = 1;
|
|
}
|
|
|
|
if (c == 0)
|
|
return 0;
|
|
}
|
|
|
|
if (j == iterations)
|
|
return -1;
|
|
}
|
|
|
|
return (n_gcd(n, c) == UWORD(1));
|
|
}
|