80 lines
2.4 KiB
C
80 lines
2.4 KiB
C
/*=============================================================================
|
|
|
|
This file is part of FLINT.
|
|
|
|
FLINT is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
FLINT is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with FLINT; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2011 William Hart
|
|
|
|
******************************************************************************/
|
|
|
|
#define ulong ulongxx /* interferes with system includes */
|
|
#include <math.h>
|
|
#undef ulong
|
|
#include <gmp.h>
|
|
#include "flint.h"
|
|
#include "ulong_extras.h"
|
|
|
|
mp_limb_t n_factor_lehman(mp_limb_t n)
|
|
{
|
|
double limit;
|
|
mp_limb_t cuberoot, k;
|
|
n_factor_t factors;
|
|
slong bound;
|
|
|
|
#if FLINT64 /* cannot compute enough primes */
|
|
if (n > UWORD(10000000000000000)) return n;
|
|
#endif
|
|
|
|
if ((n & 1) == 0) return 2;
|
|
|
|
limit = pow(n, 1.0/3.0);
|
|
cuberoot = (mp_limb_t) ceil(limit);
|
|
bound = n_prime_pi(cuberoot);
|
|
|
|
n_factor_init(&factors);
|
|
if (n_factor_trial_range(&factors, n, 0, bound) != n)
|
|
return factors.p[0];
|
|
|
|
if ((factors.p[0] = n_factor_one_line(n, FLINT_FACTOR_ONE_LINE_ITERS)))
|
|
if (factors.p[0] != n)
|
|
return factors.p[0];
|
|
|
|
for (k = 1; k <= cuberoot + 1; k++)
|
|
{
|
|
double low = 2.0*sqrt((double) k)*sqrt((double) n);
|
|
mp_limb_t x = (mp_limb_t) ceil(low - 0.0001);
|
|
mp_limb_t end = (mp_limb_t) floor(0.0001 + low + pow(n, 1.0/6.0)/((double) 4.0*sqrt((double) k)));
|
|
mp_limb_t sub = k*n*4;
|
|
|
|
for ( ; x <= end; x++)
|
|
{
|
|
mp_limb_t p, sq = x*x - sub;
|
|
if (n_is_square(sq))
|
|
{
|
|
sq = sqrt((double) sq);
|
|
p = n_gcd(n, x - sq);
|
|
if (p != 1)
|
|
return p;
|
|
}
|
|
}
|
|
}
|
|
|
|
return n;
|
|
}
|