126 lines
3.0 KiB
C
126 lines
3.0 KiB
C
/*=============================================================================
|
|
|
|
This file is part of FLINT.
|
|
|
|
FLINT is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
FLINT is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with FLINT; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2011 Jan Tuitman
|
|
Copyright (C) 2011, 2012 Sebastian Pancratz
|
|
|
|
******************************************************************************/
|
|
|
|
#include "padic.h"
|
|
|
|
#define n (S->n)
|
|
#define pow (S->pow)
|
|
|
|
void _padic_inv_precompute(padic_inv_t S, const fmpz_t p, slong N)
|
|
{
|
|
slong *a;
|
|
|
|
a = _padic_lifts_exps(&n, N);
|
|
|
|
pow = _fmpz_vec_init(2 * n + 2);
|
|
|
|
_padic_lifts_pows(pow, a, n, p);
|
|
|
|
flint_free(a);
|
|
}
|
|
|
|
void _padic_inv_clear(padic_inv_t S)
|
|
{
|
|
_fmpz_vec_clear(pow, 2 * n + 2);
|
|
}
|
|
|
|
void _padic_inv_precomp(fmpz_t rop, const fmpz_t op, const padic_inv_t S)
|
|
{
|
|
slong i;
|
|
fmpz *t, *u;
|
|
|
|
u = pow + n;
|
|
t = pow + 2 * n;
|
|
|
|
/* Compute reduced units */
|
|
{
|
|
fmpz_mod(u + 0, op, pow + 0);
|
|
}
|
|
for (i = 1; i < n; i++)
|
|
{
|
|
fmpz_mod(u + i, u + (i - 1), pow + i);
|
|
}
|
|
|
|
/* Run Newton iteration */
|
|
i = n - 1;
|
|
{
|
|
fmpz_invmod(rop, u + i, pow + i);
|
|
}
|
|
for (i--; i >= 0; i--)
|
|
{
|
|
fmpz_mul(t, rop, rop);
|
|
fmpz_mul(t + 1, u + i, t);
|
|
fmpz_mul_2exp(rop, rop, 1);
|
|
fmpz_sub(rop, rop, t + 1);
|
|
fmpz_mod(rop, rop, pow + i);
|
|
}
|
|
}
|
|
|
|
#undef n
|
|
#undef pow
|
|
|
|
void _padic_inv(fmpz_t rop, const fmpz_t op, const fmpz_t p, slong N)
|
|
{
|
|
if (N == 1)
|
|
{
|
|
fmpz_invmod(rop, op, p);
|
|
}
|
|
else
|
|
{
|
|
padic_inv_t S;
|
|
|
|
_padic_inv_precompute(S, p, N);
|
|
_padic_inv_precomp(rop, op, S);
|
|
_padic_inv_clear(S);
|
|
}
|
|
}
|
|
|
|
void padic_inv(padic_t rop, const padic_t op, const padic_ctx_t ctx)
|
|
{
|
|
if (padic_is_zero(op))
|
|
{
|
|
flint_printf("Exception (padic_inv). Zero is not invertible.\n");
|
|
abort();
|
|
}
|
|
|
|
/*
|
|
If x = u p^v has negative valuation with N <= -v then the
|
|
exact inverse of x is zero when reduced modulo $p^N$
|
|
*/
|
|
if (padic_prec(rop) + padic_val(op) <= 0)
|
|
{
|
|
padic_zero(rop);
|
|
}
|
|
else
|
|
{
|
|
_padic_inv(padic_unit(rop),
|
|
padic_unit(op), ctx->p, padic_prec(rop) + padic_val(op));
|
|
|
|
padic_val(rop) = - padic_val(op);
|
|
}
|
|
}
|
|
|