156 lines
3.8 KiB
C
156 lines
3.8 KiB
C
/*=============================================================================
|
|
|
|
This file is part of FLINT.
|
|
|
|
FLINT is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
FLINT is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with FLINT; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
=============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2011 Fredrik Johansson
|
|
|
|
******************************************************************************/
|
|
|
|
#include "fmpq.h"
|
|
|
|
void
|
|
_fmpq_add(fmpz_t rnum, fmpz_t rden, const fmpz_t p, const fmpz_t q,
|
|
const fmpz_t r, const fmpz_t s)
|
|
{
|
|
fmpz_t g, a, b, t, u;
|
|
|
|
/* Same denominator */
|
|
if (fmpz_equal(q, s))
|
|
{
|
|
fmpz_add(rnum, p, r);
|
|
|
|
/* Both are integers */
|
|
if (fmpz_is_one(q))
|
|
{
|
|
fmpz_set(rden, q);
|
|
}
|
|
else
|
|
{
|
|
fmpz_init(g);
|
|
fmpz_gcd(g, rnum, q);
|
|
|
|
if (fmpz_is_one(g))
|
|
{
|
|
fmpz_set(rden, q);
|
|
}
|
|
else
|
|
{
|
|
fmpz_divexact(rnum, rnum, g);
|
|
fmpz_divexact(rden, q, g);
|
|
}
|
|
fmpz_clear(g);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* p/q is an integer */
|
|
if (fmpz_is_one(q))
|
|
{
|
|
fmpz_init(t);
|
|
fmpz_mul(t, p, s);
|
|
fmpz_add(rnum, t, r);
|
|
fmpz_set(rden, s);
|
|
fmpz_clear(t);
|
|
return;
|
|
}
|
|
|
|
/* r/s is an integer */
|
|
if (fmpz_is_one(s))
|
|
{
|
|
fmpz_init(t);
|
|
fmpz_mul(t, r, q);
|
|
fmpz_add(rnum, t, p);
|
|
fmpz_set(rden, q);
|
|
fmpz_clear(t);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
We want to compute p/q + r/s where the inputs are already
|
|
in canonical form.
|
|
|
|
If q and s are coprime, then (p*s + q*r, q*s) is in canonical form.
|
|
|
|
Otherwise, let g = gcd(q, s) with q = g*a, s = g*b. Then the sum
|
|
is given by ((p*b + r*a) / (a*b)) / g.
|
|
|
|
As above, (p*b + r*a) / (a*b) is in canonical form, and g has
|
|
no common factor with a*b. Thus we only need to reduce (p*b + r*a, g).
|
|
If the gcd is 1, the reduced denominator is g*a*b = q*b.
|
|
*/
|
|
fmpz_init(g);
|
|
fmpz_gcd(g, q, s);
|
|
|
|
if (fmpz_is_one(g))
|
|
{
|
|
fmpz_init(t);
|
|
fmpz_init(u);
|
|
|
|
fmpz_mul(t, p, s);
|
|
fmpz_mul(u, q, r);
|
|
fmpz_add(rnum, t, u);
|
|
fmpz_mul(rden, q, s);
|
|
|
|
fmpz_clear(t);
|
|
fmpz_clear(u);
|
|
}
|
|
else
|
|
{
|
|
fmpz_init(a);
|
|
fmpz_init(b);
|
|
fmpz_init(t);
|
|
fmpz_init(u);
|
|
|
|
fmpz_divexact(a, q, g);
|
|
fmpz_divexact(b, s, g);
|
|
|
|
fmpz_mul(t, p, b);
|
|
fmpz_mul(u, r, a);
|
|
fmpz_add(rnum, t, u);
|
|
|
|
fmpz_gcd(t, rnum, g);
|
|
|
|
if (fmpz_is_one(t))
|
|
{
|
|
fmpz_mul(rden, q, b);
|
|
}
|
|
else
|
|
{
|
|
fmpz_divexact(rnum, rnum, t);
|
|
fmpz_divexact(g, q, t);
|
|
fmpz_mul(rden, g, b);
|
|
}
|
|
|
|
fmpz_clear(a);
|
|
fmpz_clear(b);
|
|
fmpz_clear(t);
|
|
fmpz_clear(u);
|
|
}
|
|
|
|
fmpz_clear(g);
|
|
}
|
|
|
|
void fmpq_add(fmpq_t res, const fmpq_t op1, const fmpq_t op2)
|
|
{
|
|
_fmpq_add(fmpq_numref(res), fmpq_denref(res),
|
|
fmpq_numref(op1), fmpq_denref(op1),
|
|
fmpq_numref(op2), fmpq_denref(op2));
|
|
}
|