pqc/src/poly.c

616 lines
14 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (C) 2014 FH Bielefeld
*
* This file is part of a FH Bielefeld project.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include "context.h"
#include "err.h"
#include "mem.h"
#include "poly.h"
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <tompoly.h>
#include <tommath.h>
#include <stdbool.h>
/*
* static declarations
*/
static void pb_mod2_to_modq(pb_poly * const a,
pb_poly *Fq,
ntru_context *ctx);
/**
* Initialize a mp_int and check if this was successful, the
* caller must free new_int with mp_clear().
*
* @param new_int a pointer to the mp_int you want to initialize
*/
void init_integer(mp_int *new_int)
{
int result;
if ((result = mp_init(new_int)) != MP_OKAY) {
NTRU_ABORT("Error initializing the number. %s",
mp_error_to_string(result));
}
}
/**
* Initialize one ore more mp_int and check if this was successful, the
* caller must free new_int with mp_clear().
*
* @param new_int a pointer to the mp_int you want to initialize
*/
void init_integers(mp_int *new_int, ...)
{
mp_int *next_mp;
va_list args;
next_mp = new_int;
va_start(args, new_int);
while (next_mp != NULL) {
init_integer(next_mp);
next_mp = va_arg(args, mp_int*);
}
va_end(args);
}
/**
* Initialize a Polynom with a pb_poly and a mp_int as characteristic.
* Checks if everything went fine. The caller must free new_poly
* with pb_clear().
*
* @param new_poly the pb_poly you want to initialize
* @param chara the characteristic
*/
void init_polynom(pb_poly *new_poly, mp_int *chara)
{
int result;
if ((result = pb_init(new_poly, chara)) != MP_OKAY) {
NTRU_ABORT("Error initializing the number. %s",
mp_error_to_string(result));
}
}
/**
* Initialize a Polynom with a pb_poly and an mp_int as characteristic
* with size. Checks if everything went fine. The caller must free
* new_poly with pb_clear().
*
* @param new_poly the pb_poly you want to initialize
* @param chara the characteristic
* @param size the size of the polynomial
*/
void init_polynom_size(pb_poly *new_poly, mp_int *chara, size_t size)
{
int result;
if ((result = pb_init_size(new_poly, chara, size)) != MP_OKAY) {
NTRU_ABORT("Error initializing the number. %s",
mp_error_to_string(result));
}
}
/**
* Initializes and builds a polynomial with the
* coefficient values of c[] of size len within NTRU
* context ctx and returns a newly allocated polynomial
* pointer which is not clamped.
*
* If you want to fill a polyonmial of length 11 with zeros,
* call build_polynom(NULL, 11).
*
* @param c array of polynomial coefficients, can be NULL
* @param len size of the coefficient array, can be 0
* @param ctx NTRU context
* @return newly allocated polynomial pointer, must be freed
* with delete_polynom()
*/
pb_poly *build_polynom(int const * const c,
const size_t len)
{
pb_poly *new_poly;
mp_int chara;
new_poly = ntru_malloc(sizeof(*new_poly));
init_integer(&chara);
init_polynom_size(new_poly, &chara, len);
mp_clear(&chara);
/* fill the polynom if c is not NULL */
if (c) {
for (unsigned int i = 0; i < len; i++) {
bool sign = false;
unsigned long unsigned_c;
if (c[i] < 0) {
unsigned_c = 0 - c[i];
sign = true;
} else {
unsigned_c = c[i];
}
MP_SET_INT(&(new_poly->terms[i]), unsigned_c);
if (sign == true)
mp_neg(&(new_poly->terms[i]), &(new_poly->terms[i]));
}
} else { /* fill with 0 */
for (unsigned int i = 0; i < len; i++)
MP_SET(&(new_poly->terms[i]), 0);
}
new_poly->used = len;
return new_poly;
}
/**
* Sets all the polynomial coefficients to +0.
*
* @param poly the polynomial
* @param len the length of the polynomial
*/
void erase_polynom(pb_poly *poly, size_t len)
{
for (unsigned int i = 0; i < len ; i++) {
MP_SET(&(poly->terms[i]), 0);
mp_abs(&(poly->terms[i]), &(poly->terms[i]));
}
}
/**
* This deletes the internal structure of a polynomial,
* and frees the pointer. Don't call this on stack variables,
* this is intended for use after ntru_ functions, that
* return a polynomial pointer.
*
* @param poly the polynomial to delete
*/
void delete_polynom(pb_poly *poly)
{
pb_clear(poly);
free(poly);
}
/**
* This deletes the internal structure of all polynomials,
* and frees the pointers. Don't call this on stack variables,
* this is intended for use after ntru_ functions, that
* return a polynomial pointer.
* You must call this with NULL as last argument!
*
* @param poly the polynomial to delete
* @param ... follow up polynomials
*/
void delete_polynom_multi(pb_poly *poly, ...)
{
pb_poly *next_poly;
va_list args;
next_poly = poly;
va_start(args, poly);
while (next_poly != NULL) {
delete_polynom(next_poly);
next_poly = va_arg(args, pb_poly*);
}
va_end(args);
}
/**
* Starmultiplication, as follows:
* c = a * b mod (x^N 1)
*
* @param a polynom to multiply (can be the same as c)
* @param b polynom to multiply
* @param c polynom [out]
* @param ctx NTRU context
* @param modulus whether we use p or q
*/
void pb_starmultiply(pb_poly *a,
pb_poly *b,
pb_poly *c,
ntru_context *ctx,
unsigned int modulus)
{
pb_poly *a_tmp;
mp_int mp_modulus;
init_integer(&mp_modulus);
MP_SET_INT(&mp_modulus, (unsigned long)(modulus));
/* avoid side effects */
a_tmp = build_polynom(NULL, ctx->N);
PB_COPY(a, a_tmp);
erase_polynom(c, ctx->N);
for (int k = ctx->N - 1; k >= 0; k--) {
int j;
j = k + 1;
for (int i = ctx->N - 1; i >= 0; i--) {
if (j == (int)(ctx->N))
j = 0;
if (mp_cmp_d(&(a_tmp->terms[i]), 0) != MP_EQ &&
mp_cmp_d(&(b->terms[j]), 0) != MP_EQ) {
mp_int mp_tmp;
init_integer(&mp_tmp);
MP_MUL(&(a_tmp->terms[i]), &(b->terms[j]), &mp_tmp);
MP_ADD(&(c->terms[k]), &mp_tmp, &(c->terms[k]));
MP_DIV(&(c->terms[k]), &mp_modulus, NULL, &(c->terms[k]));
mp_clear(&mp_tmp);
}
j++;
}
}
mp_clear(&mp_modulus);
delete_polynom(a_tmp);
}
/**
* Calculate c = a * b where c and a are polynomials
* and b is an mp_int.
*
* @param a polynom
* @param b mp_int
* @param c polynom [out]
* @return error code of pb_mul()
*/
int pb_mp_mul(pb_poly *a, mp_int *b, pb_poly *c)
{
int result;
pb_poly *b_poly = build_polynom(NULL, 1);
MP_COPY(b, &(b_poly->terms[0]));
printf("u converted to poly: "); draw_polynom(b_poly);
result = pb_mul(a, b_poly, c);
delete_polynom(b_poly);
return result;
}
/**
* c = a XOR b
*
* @param a polynom (is allowed to be the same as param c)
* @param b polynom
* @param c polynom [out]
* @param len max size of the polynoms, make sure all are
* properly allocated
*/
void pb_xor(pb_poly *a,
pb_poly *b,
pb_poly *c,
const size_t len)
{
for (unsigned int i = 0; i < len; i++)
MP_XOR(&(a->terms[i]), &(b->terms[i]), &(c->terms[i]));
}
/**
* Get the degree of the polynomial.
*
* @param poly the polynomial
* @return the degree
*/
unsigned int get_degree(pb_poly const * const poly)
{
unsigned int count = 0;
for (int i = 0; i < poly->alloc; i++)
if (mp_iszero(&(poly->terms[i])) == MP_NO)
count = i;
return count;
}
/**
* Find the inverse polynomial modulo a power of 2,
* which is q.
*
* @param a polynomial to invert
* @param Fq polynomial [out]
* @param ctx NTRU context
*/
static void pb_mod2_to_modq(pb_poly * const a,
pb_poly *Fq,
ntru_context *ctx)
{
int v = 2;
while (v < (int)(ctx->q)) {
pb_poly *pb_tmp,
*pb_tmp2;
mp_int tmp_v;
pb_tmp = build_polynom(NULL, ctx->N);
v = v * 2;
init_integer(&tmp_v);
MP_SET_INT(&tmp_v, v);
pb_tmp2 = build_polynom(NULL, ctx->N);
MP_SET_INT(&(pb_tmp2->terms[0]), 2);
pb_starmultiply(a, Fq, pb_tmp, ctx, v);
PB_SUB(pb_tmp2, pb_tmp, pb_tmp);
PB_MOD(pb_tmp, &tmp_v, pb_tmp, ctx->N);
pb_starmultiply(Fq, pb_tmp, Fq, ctx, v);
mp_clear(&tmp_v);
delete_polynom_multi(pb_tmp, pb_tmp2, NULL);
}
}
/**
* Invert the polynomial a modulo q.
*
* @param a polynomial to invert (is allowed to be the same as param Fq)
* @param Fq polynomial [out]
* @param ctx NTRU context
* @return true/false for success/failure
*/
bool pb_inverse_poly_q(pb_poly * const a,
pb_poly *Fq,
ntru_context *ctx)
{
int k = 0,
j = 0;
pb_poly *a_tmp, *b, *c, *f, *g;
/* general initialization of temp variables */
b = build_polynom(NULL, ctx->N + 1);
MP_SET(&(b->terms[0]), 1);
c = build_polynom(NULL, ctx->N + 1);
f = build_polynom(NULL, ctx->N + 1);
PB_COPY(a, f);
/* set g(x) = x^N 1 */
g = build_polynom(NULL, ctx->N + 1);
MP_SET(&(g->terms[0]), 1);
mp_neg(&(g->terms[0]), &(g->terms[0]));
MP_SET(&(g->terms[ctx->N]), 1);
/* avoid side effects */
a_tmp = build_polynom(NULL, ctx->N);
PB_COPY(a, a_tmp);
erase_polynom(Fq, ctx->N);
while (1) {
while (mp_cmp_d(&(f->terms[0]), 0) == MP_EQ) {
for (unsigned int i = 1; i <= ctx->N; i++) {
/* f(x) = f(x) / x */
MP_COPY(&(f->terms[i]), &(f->terms[i - 1]));
/* c(x) = c(x) * x */
MP_COPY(&(c->terms[ctx->N - i]), &(c->terms[ctx->N + 1 - i]));
}
MP_SET(&(f->terms[ctx->N]), 0);
MP_SET(&(c->terms[0]), 0);
k++;
}
if (get_degree(f) == 0)
break;
if (get_degree(f) < get_degree(g)) {
pb_exch(f, g);
pb_exch(b, c);
}
pb_xor(f, g, f, ctx->N);
pb_xor(b, c, b, ctx->N);
}
k = k % ctx->N;
/* Fq(x) = x^(N-k) * b(x) */
for (int i = ctx->N - 1; i >= 0; i--) {
j = i - k;
if (j < 0)
j = j + ctx->N;
MP_COPY(&(b->terms[i]), &(Fq->terms[j]));
}
pb_mod2_to_modq(a_tmp, Fq, ctx);
/* pull into positive space */
for (int i = ctx->N - 1; i >= 0; i--)
if (mp_cmp_d(&(Fq->terms[i]), 0) == MP_LT) {
mp_int mp_tmp;
init_integer(&mp_tmp);
MP_SET_INT(&mp_tmp, ctx->q);
MP_ADD(&(Fq->terms[i]), &mp_tmp, &(Fq->terms[i]));
mp_clear(&mp_tmp);
}
delete_polynom_multi(a_tmp, b, c, f, g, NULL);
/* TODO: check if the f * Fq = 1 (mod p) condition holds true */
return true;
}
/**
* Invert the polynomial a modulo p.
*
* @param a polynomial to invert
* @param Fq polynomial [out]
* @param ctx NTRU context
*/
bool pb_inverse_poly_p(pb_poly *a,
pb_poly *Fp,
ntru_context *ctx)
{
int k = 0,
j = 0;
pb_poly *a_tmp, *b, *c, *f, *g;
mp_int mp_modulus;
/* general initialization of temp variables */
init_integer(&mp_modulus);
MP_SET_INT(&mp_modulus, (unsigned long)(ctx->p));
b = build_polynom(NULL, ctx->N + 1);
MP_SET(&(b->terms[0]), 1);
c = build_polynom(NULL, ctx->N + 1);
f = build_polynom(NULL, ctx->N + 1);
PB_COPY(a, f);
/* set g(x) = x^N 1 */
g = build_polynom(NULL, ctx->N + 1);
MP_SET(&(g->terms[0]), 1);
mp_neg(&(g->terms[0]), &(g->terms[0]));
MP_SET(&(g->terms[ctx->N]), 1);
/* avoid side effects */
a_tmp = build_polynom(NULL, ctx->N);
PB_COPY(a, a_tmp);
erase_polynom(Fp, ctx->N);
printf("f: "); draw_polynom(f);
printf("g: "); draw_polynom(g);
while (1) {
while (mp_cmp_d(&(f->terms[0]), 0) == MP_EQ) {
for (unsigned int i = 1; i <= ctx->N; i++) {
/* f(x) = f(x) / x */
MP_COPY(&(f->terms[i]), &(f->terms[i - 1]));
/* c(x) = c(x) * x */
MP_COPY(&(c->terms[ctx->N - i]), &(c->terms[ctx->N + 1 - i]));
}
MP_SET(&(f->terms[ctx->N]), 0);
MP_SET(&(c->terms[0]), 0);
k++;
}
if (get_degree(f) == 0)
break;
if (get_degree(f) < get_degree(g)) {
/* exchange f and g and exchange b and c */
pb_exch(f, g);
pb_exch(b, c);
}
{
pb_poly *u, *c_tmp, *g_tmp;
mp_int mp_tmp;
init_integer(&mp_tmp);
u = build_polynom(NULL, ctx->N, ctx);
g_tmp = build_polynom(NULL, ctx->N + 1);
PB_COPY(g, g_tmp);
c_tmp = build_polynom(NULL, ctx->N + 1);
PB_COPY(c, c_tmp);
/* u = f[0] * g[0]^(-1) mod p
* = (f[0] mod p) * (g[0] inverse mod p) mod p */
MP_COPY(&(f->terms[0]), &mp_tmp); /* don't change f[0] */
MP_INVMOD(&(g->terms[0]), &mp_modulus, &(u->terms[0]));
MP_MOD(&mp_tmp, &mp_modulus, &mp_tmp);
MP_MUL(&(u->terms[0]), &mp_tmp, &(u->terms[0]));
MP_MOD(&(u->terms[0]), &mp_modulus, &(u->terms[0]));
/* f = f - u * g mod p */
PB_MUL(g_tmp, u, g_tmp);
PB_SUB(f, g_tmp, f);
PB_MOD(f, &mp_modulus, f, ctx->N + 1);
/* b = b - u * c mod p */
PB_MUL(c_tmp, u, c_tmp);
PB_SUB(b, c_tmp, b);
PB_MOD(b, &mp_modulus, b, ctx->N + 1);
mp_clear(&mp_tmp);
delete_polynom_multi(u, c_tmp, g_tmp, NULL);
}
}
k = k % ctx->N;
/* Fp(x) = x^(N-k) * b(x) */
for (int i = ctx->N - 1; i >= 0; i--) {
/* b(X) = f[0]^(-1) * b(X) (mod p) */
{
pb_poly *poly_tmp;
poly_tmp = build_polynom(NULL, 1);
MP_INVMOD(&(f->terms[0]), &mp_modulus, &(poly_tmp->terms[0]));
MP_MOD(&(b->terms[i]), &mp_modulus, &(b->terms[i]));
MP_MUL(&(b->terms[i]), &(poly_tmp->terms[0]), &(b->terms[i]));
delete_polynom(poly_tmp);
}
j = i - k;
if (j < 0)
j = j + ctx->N;
MP_COPY(&(b->terms[i]), &(Fp->terms[j]));
/* delete_polynom(f_tmp); */
}
/* pull into positive space */
for (int i = ctx->N - 1; i >= 0; i--)
if (mp_cmp_d(&(Fp->terms[i]), 0) == MP_LT)
MP_ADD(&(Fp->terms[i]), &mp_modulus, &(Fp->terms[i]));
mp_clear(&mp_modulus);
delete_polynom_multi(a_tmp, b, c, f, g, NULL);
/* TODO: check if the f * Fq = 1 (mod p) condition holds true */
return true;
}
/**
* Print the polynomial in a human readable format to stdout.
*
* @param poly to draw
*/
void draw_polynom(pb_poly * const poly)
{
int x;
char buf[8192];
if (poly->used == 0) {
printf("0");
} else {
for (x = poly->used - 1; x >= 0; x--) {
if (mp_iszero(&(poly->terms[x])) == MP_YES)
continue;
mp_toradix(&(poly->terms[x]), buf, 10);
if ((x != poly->used - 1) && poly->terms[x].sign == MP_ZPOS) {
printf("+");
}
printf(" %sx^%d ", buf, x);
}
}
if (mp_iszero(&(poly->characteristic)) == MP_NO) {
mp_toradix(&(poly->characteristic), buf, 10);
printf(" (mod %s)", buf);
}
printf("\n");
}