243 lines
8.0 KiB
C
243 lines
8.0 KiB
C
/*============================================================================
|
|
|
|
This file is part of FLINT.
|
|
|
|
FLINT is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
FLINT is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with FLINT; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
===============================================================================*/
|
|
/******************************************************************************
|
|
|
|
Copyright (C) 2010-2012 Fredrik Johansson
|
|
|
|
******************************************************************************/
|
|
|
|
#ifndef ARITH_H
|
|
#define ARITH_H
|
|
|
|
#include <gmp.h>
|
|
#include <mpfr.h>
|
|
#include "flint.h"
|
|
#include "fmpz.h"
|
|
#include "fmpz_mat.h"
|
|
#include "fmpz_poly.h"
|
|
#include "fmpq_poly.h"
|
|
#include "fmpq.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/* MPFR extras ***************************************************************/
|
|
|
|
void mpfr_zeta_inv_euler_product(mpfr_t res, ulong s, int char_4);
|
|
void mpfr_pi_chudnovsky(mpfr_t res, mpfr_rnd_t rnd);
|
|
|
|
/* Various arithmetic functions **********************************************/
|
|
|
|
void arith_primorial(fmpz_t res, slong n);
|
|
|
|
void _arith_harmonic_number(fmpz_t num, fmpz_t den, slong n);
|
|
void arith_harmonic_number(fmpq_t x, slong n);
|
|
|
|
void arith_ramanujan_tau(fmpz_t res, const fmpz_t n);
|
|
void arith_ramanujan_tau_series(fmpz_poly_t res, slong n);
|
|
|
|
void arith_divisors(fmpz_poly_t res, const fmpz_t n);
|
|
void arith_divisor_sigma(fmpz_t res, const fmpz_t n, ulong k);
|
|
|
|
int arith_moebius_mu(const fmpz_t n);
|
|
|
|
void arith_euler_phi(fmpz_t res, const fmpz_t n);
|
|
|
|
/* Stirling numbers **********************************************************/
|
|
|
|
void arith_stirling_number_1u(fmpz_t s, slong n, slong k);
|
|
void arith_stirling_number_1(fmpz_t s, slong n, slong k);
|
|
void arith_stirling_number_2(fmpz_t s, slong n, slong k);
|
|
|
|
void arith_stirling_number_1u_vec(fmpz * row, slong n, slong klen);
|
|
void arith_stirling_number_1_vec(fmpz * row, slong n, slong klen);
|
|
void arith_stirling_number_2_vec(fmpz * row, slong n, slong klen);
|
|
|
|
void arith_stirling_number_1u_vec_next(fmpz * row,
|
|
const fmpz * prev, slong n, slong klen);
|
|
void arith_stirling_number_1_vec_next(fmpz * row,
|
|
const fmpz * prev, slong n, slong klen);
|
|
void arith_stirling_number_2_vec_next(fmpz * row,
|
|
const fmpz * prev, slong n, slong klen);
|
|
|
|
void arith_stirling_matrix_1u(fmpz_mat_t mat);
|
|
void arith_stirling_matrix_1(fmpz_mat_t mat);
|
|
void arith_stirling_matrix_2(fmpz_mat_t mat);
|
|
|
|
/* Bell numbers **************************************************************/
|
|
|
|
#if FLINT64
|
|
#define BELL_NUMBER_TAB_SIZE 26
|
|
#else
|
|
#define BELL_NUMBER_TAB_SIZE 16
|
|
#endif
|
|
|
|
extern const mp_limb_t bell_number_tab[];
|
|
|
|
double arith_bell_number_size(ulong n);
|
|
|
|
void arith_bell_number(fmpz_t b, ulong n);
|
|
void arith_bell_number_bsplit(fmpz_t res, ulong n);
|
|
void arith_bell_number_multi_mod(fmpz_t res, ulong n);
|
|
|
|
void arith_bell_number_vec(fmpz * b, slong n);
|
|
void arith_bell_number_vec_recursive(fmpz * b, slong n);
|
|
void arith_bell_number_vec_multi_mod(fmpz * b, slong n);
|
|
|
|
mp_limb_t arith_bell_number_nmod(ulong n, nmod_t mod);
|
|
|
|
void arith_bell_number_nmod_vec(mp_ptr b, slong n, nmod_t mod);
|
|
void arith_bell_number_nmod_vec_recursive(mp_ptr b, slong n, nmod_t mod);
|
|
void arith_bell_number_nmod_vec_series(mp_ptr b, slong n, nmod_t mod);
|
|
|
|
|
|
/* Euler numbers *************************************************************/
|
|
|
|
#if FLINT64
|
|
#define SMALL_EULER_LIMIT 25
|
|
#else
|
|
#define SMALL_EULER_LIMIT 15
|
|
#endif
|
|
|
|
static const mp_limb_t euler_number_small[] = {
|
|
UWORD(1), UWORD(1), UWORD(5), UWORD(61), UWORD(1385), UWORD(50521), UWORD(2702765),
|
|
UWORD(199360981),
|
|
#if FLINT64
|
|
UWORD(19391512145), UWORD(2404879675441), UWORD(370371188237525),
|
|
UWORD(69348874393137901), UWORD(15514534163557086905)
|
|
#endif
|
|
};
|
|
|
|
double arith_euler_number_size(ulong n);
|
|
|
|
void arith_euler_number_vec(fmpz * res, slong n);
|
|
|
|
void _arith_euler_number_zeta(fmpz_t res, ulong n);
|
|
void arith_euler_number(fmpz_t res, ulong n);
|
|
|
|
void arith_euler_polynomial(fmpq_poly_t poly, ulong n);
|
|
|
|
/* Bernoulli numbers *********************************************************/
|
|
|
|
#if FLINT64
|
|
#define BERNOULLI_SMALL_NUMER_LIMIT 35
|
|
#else
|
|
#define BERNOULLI_SMALL_NUMER_LIMIT 27
|
|
#endif
|
|
|
|
static const slong _bernoulli_numer_small[] = {
|
|
WORD(1), WORD(1), WORD(-1), WORD(1), WORD(-1), WORD(5), WORD(-691), WORD(7), WORD(-3617), WORD(43867), WORD(-174611), WORD(854513),
|
|
WORD(-236364091), WORD(8553103),
|
|
#if FLINT64
|
|
WORD(-23749461029), WORD(8615841276005), WORD(-7709321041217), WORD(2577687858367)
|
|
#endif
|
|
};
|
|
|
|
void _arith_bernoulli_number(fmpz_t num, fmpz_t den, ulong n);
|
|
void arith_bernoulli_number(fmpq_t x, ulong n);
|
|
|
|
void _arith_bernoulli_number_vec(fmpz * num, fmpz * den, slong n);
|
|
void arith_bernoulli_number_vec(fmpq * num, slong n);
|
|
|
|
void arith_bernoulli_number_denom(fmpz_t den, ulong n);
|
|
double arith_bernoulli_number_size(ulong n);
|
|
|
|
void arith_bernoulli_polynomial(fmpq_poly_t poly, ulong n);
|
|
|
|
void _arith_bernoulli_number_zeta(fmpz_t num, fmpz_t den, ulong n);
|
|
void _arith_bernoulli_number_vec_multi_mod(fmpz * num, fmpz * den, slong n);
|
|
void _arith_bernoulli_number_vec_recursive(fmpz * num, fmpz * den, slong n);
|
|
void _arith_bernoulli_number_vec_zeta(fmpz * num, fmpz * den, slong n);
|
|
|
|
/* Cyclotomic polynomials ****************************************************/
|
|
|
|
void _arith_cyclotomic_polynomial(fmpz * a, ulong n, mp_ptr factors,
|
|
slong num_factors, ulong phi);
|
|
void arith_cyclotomic_polynomial(fmpz_poly_t poly, ulong n);
|
|
|
|
void _arith_cos_minpoly(fmpz * coeffs, slong d, ulong n);
|
|
void arith_cos_minpoly(fmpz_poly_t poly, ulong n);
|
|
|
|
/* Hypergeometric polynomials ************************************************/
|
|
|
|
void arith_legendre_polynomial(fmpq_poly_t poly, ulong n);
|
|
void arith_chebyshev_t_polynomial(fmpz_poly_t poly, ulong n);
|
|
void arith_chebyshev_u_polynomial(fmpz_poly_t poly, ulong n);
|
|
|
|
/* Swinnerton-Dyer polynomials ***********************************************/
|
|
|
|
void arith_swinnerton_dyer_polynomial(fmpz_poly_t poly, ulong n);
|
|
|
|
/* Landau function ***********************************************************/
|
|
|
|
void arith_landau_function_vec(fmpz * res, slong len);
|
|
|
|
/* Dedekind sums *************************************************************/
|
|
|
|
void arith_dedekind_sum_naive(fmpq_t s, const fmpz_t h, const fmpz_t k);
|
|
double arith_dedekind_sum_coprime_d(double h, double k);
|
|
void arith_dedekind_sum_coprime_large(fmpq_t s, const fmpz_t h, const fmpz_t k);
|
|
void arith_dedekind_sum_coprime(fmpq_t s, const fmpz_t h, const fmpz_t k);
|
|
void arith_dedekind_sum(fmpq_t s, const fmpz_t h, const fmpz_t k);
|
|
|
|
/* Exponential sums **********************************************************/
|
|
|
|
typedef struct
|
|
{
|
|
int n;
|
|
int prefactor;
|
|
mp_limb_t sqrt_p;
|
|
mp_limb_t sqrt_q;
|
|
mp_limb_signed_t cos_p[FLINT_BITS];
|
|
mp_limb_t cos_q[FLINT_BITS];
|
|
} trig_prod_struct;
|
|
|
|
typedef trig_prod_struct trig_prod_t[1];
|
|
|
|
static __inline__
|
|
void trig_prod_init(trig_prod_t sum)
|
|
{
|
|
sum->n = 0;
|
|
sum->prefactor = 1;
|
|
sum->sqrt_p = 1;
|
|
sum->sqrt_q = 1;
|
|
}
|
|
|
|
void arith_hrr_expsum_factored(trig_prod_t prod, mp_limb_t k, mp_limb_t n);
|
|
|
|
/* Number of partitions ******************************************************/
|
|
|
|
void arith_number_of_partitions_nmod_vec(mp_ptr res, slong len, nmod_t mod);
|
|
void arith_number_of_partitions_vec(fmpz * res, slong len);
|
|
void arith_number_of_partitions_mpfr(mpfr_t x, ulong n);
|
|
void arith_number_of_partitions(fmpz_t x, ulong n);
|
|
|
|
/* Number of sums of squares representations *********************************/
|
|
|
|
void arith_sum_of_squares(fmpz_t r, ulong k, const fmpz_t n);
|
|
void arith_sum_of_squares_vec(fmpz * r, ulong k, slong n);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif
|