pqc/external/flint-2.4.3/nmod_mat/test/t-inv.c
2014-05-24 23:16:06 +02:00

147 lines
3.9 KiB
C

/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2010 Fredrik Johansson
******************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <gmp.h>
#include "flint.h"
#include "nmod_vec.h"
#include "nmod_mat.h"
#include "ulong_extras.h"
int
main(void)
{
nmod_mat_t A, B, C, I;
slong i, j, m, r;
mp_limb_t mod;
int result;
FLINT_TEST_INIT(state);
flint_printf("inv....");
fflush(stdout);
for (i = 0; i < 1000 * flint_test_multiplier(); i++)
{
m = n_randint(state, 20);
mod = n_randtest_prime(state, 0);
nmod_mat_init(A, m, m, mod);
nmod_mat_init(B, m, m, mod);
nmod_mat_init(C, m, m, mod);
nmod_mat_init(I, m, m, mod);
for (j = 0; j < m; j++)
I->rows[j][j] = UWORD(1);
/* Verify that A * A^-1 = I for random matrices */
nmod_mat_randrank(A, state, m);
/* Dense or sparse? */
if (n_randint(state, 2))
nmod_mat_randops(A, 1+n_randint(state, 1+m*m), state);
result = nmod_mat_inv(B, A);
nmod_mat_mul(C, A, B);
if (!nmod_mat_equal(C, I) || !result)
{
flint_printf("FAIL:\n");
flint_printf("A * A^-1 != I!\n");
flint_printf("A:\n");
nmod_mat_print_pretty(A);
flint_printf("A^-1:\n");
nmod_mat_print_pretty(B);
flint_printf("A * A^-1:\n");
nmod_mat_print_pretty(C);
flint_printf("\n");
abort();
}
/* Test aliasing */
nmod_mat_set(C, A);
nmod_mat_inv(A, A);
nmod_mat_mul(B, A, C);
if (!nmod_mat_equal(B, I))
{
flint_printf("FAIL:\n");
flint_printf("aliasing failed!\n");
nmod_mat_print_pretty(C);
abort();
}
nmod_mat_clear(A);
nmod_mat_clear(B);
nmod_mat_clear(C);
nmod_mat_clear(I);
}
/* Test singular systems */
for (i = 0; i < 1000 * flint_test_multiplier(); i++)
{
m = 1 + n_randint(state, 20);
mod = n_randtest_prime(state, 0);
r = n_randint(state, m);
nmod_mat_init(A, m, m, mod);
nmod_mat_init(B, m, m, mod);
nmod_mat_randrank(A, state, r);
/* Dense */
if (n_randint(state, 2))
nmod_mat_randops(A, 1+n_randint(state, 1+m*m), state);
result = nmod_mat_inv(B, A);
if (result)
{
flint_printf("FAIL:\n");
flint_printf("singular matrix reported as invertible\n");
abort();
}
/* Aliasing */
result = nmod_mat_inv(A, A);
if (result)
{
flint_printf("FAIL:\n");
flint_printf("singular matrix reported as invertiblen");
abort();
}
nmod_mat_clear(A);
nmod_mat_clear(B);
}
FLINT_TEST_CLEANUP(state);
flint_printf("PASS\n");
return 0;
}