pqc/external/flint-2.4.3/fmpz_poly/gcd_heuristic.c
2014-05-24 23:16:06 +02:00

336 lines
10 KiB
C

/*=============================================================================
This file is part of FLINT.
FLINT is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FLINT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FLINT; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
=============================================================================*/
/******************************************************************************
Copyright (C) 2011 William Hart
******************************************************************************/
#include <gmp.h>
#include "flint.h"
#include "fmpz.h"
#include "fmpz_vec.h"
#include "fmpz_poly.h"
#include "mpn_extras.h"
/*
Divide (arrayg, limbsg) by the positive value gc inplace and
return the number of limbs written
*/
mp_size_t flint_mpn_tdiv_q_fmpz_inplace(mp_ptr arrayg, mp_size_t limbsg, fmpz_t gc)
{
if (fmpz_size(gc) == 1)
{
mpn_divmod_1(arrayg, arrayg, limbsg, fmpz_get_ui(gc));
return limbsg - (arrayg[limbsg - 1] == 0);
}
else
{
mp_size_t tlimbs;
__mpz_struct * mpz_ptr = COEFF_TO_PTR(*gc);
mp_ptr temp = flint_malloc(limbsg*sizeof(mp_limb_t));
flint_mpn_copyi(temp, arrayg, limbsg);
mpn_tdiv_q(arrayg, temp, limbsg, mpz_ptr->_mp_d, mpz_ptr->_mp_size);
tlimbs = limbsg - mpz_ptr->_mp_size + 1;
tlimbs -= (arrayg[tlimbs - 1] == 0);
flint_free(temp);
return tlimbs;
}
}
/*
Returns 1 if sign * (G, glen) * (Q, qlen) = (P, len), else returns 0.
Temp requires space for glen + qlen - 1 coefficients
*/
int multiplies_out(fmpz * P, slong len, const fmpz * Q, slong qlen,
const fmpz * G, slong glen, slong sign, fmpz * temp)
{
int divides = 0;
/* multiply out */
if (qlen >= glen)
_fmpz_poly_mul(temp, Q, qlen, G, glen);
else
_fmpz_poly_mul(temp, G, glen, Q, qlen);
if (sign < WORD(0)) _fmpz_vec_neg(temp, temp, glen + qlen - 1);
/* check if quotient really was exact */
divides = (glen + qlen - 1 == len && _fmpz_vec_equal(temp, P, len));
return divides;
}
/* Assumes len1 != 0 != len2 */
int
_fmpz_poly_gcd_heuristic(fmpz * res, const fmpz * poly1, slong len1,
const fmpz * poly2, slong len2)
{
ulong bits1, bits2, max_bits, pack_bits, bound_bits, bits_G, bits_Q;
ulong limbs1, limbs2, limbsg, pack_limbs, qlimbs;
ulong log_glen, log_length;
slong sign1, sign2, glen, qlen;
fmpz_t ac, bc, d, gc;
fmpz * A, * B, * G, * Q, * t;
mp_ptr array1, array2, arrayg, q, temp;
int divides;
fmpz_init(ac);
fmpz_init(bc);
fmpz_init(d);
/* compute gcd of content of poly1 and poly2 */
_fmpz_poly_content(ac, poly1, len1);
_fmpz_poly_content(bc, poly2, len2);
fmpz_gcd(d, ac, bc);
/* special case, one of the polys is a constant */
if (len2 == 1) /* if len1 == 1 then so does len2 */
{
fmpz_set(res, d);
fmpz_clear(ac);
fmpz_clear(bc);
fmpz_clear(d);
return 1;
}
/* divide poly1 and poly2 by their content */
A = _fmpz_vec_init(len1);
B = _fmpz_vec_init(len2);
_fmpz_vec_scalar_divexact_fmpz(A, poly1, len1, ac);
_fmpz_vec_scalar_divexact_fmpz(B, poly2, len2, bc);
fmpz_clear(ac);
fmpz_clear(bc);
/* special case, one of the polys is length 2 */
if (len2 == 2) /* if len1 == 2 then so does len2 */
{
Q = _fmpz_vec_init(len1 - len2 + 1);
if (_fmpz_poly_divides(Q, A, len1, B, 2))
{
_fmpz_vec_scalar_mul_fmpz(res, B, 2, d);
if (fmpz_sgn(res + 1) < 0)
_fmpz_vec_neg(res, res, 2);
}
else
{
fmpz_set(res, d);
fmpz_zero(res + 1);
}
fmpz_clear(d);
_fmpz_vec_clear(A, len1);
_fmpz_vec_clear(B, len2);
_fmpz_vec_clear(Q, len1 - len2 + 1);
return 1;
}
/*
Determine how many bits (pack_bits) to pack into. The bound
bound_bits ensures that if G | A and G | B with G primitive
then G is the gcd of A and B. The bound is taken from
http://arxiv.org/abs/cs/0206032v1
*/
bits1 = FLINT_ABS(_fmpz_vec_max_bits(A, len1));
bits2 = FLINT_ABS(_fmpz_vec_max_bits(B, len2));
max_bits = FLINT_MAX(bits1, bits2);
bound_bits = FLINT_MIN(bits1, bits2) + 6;
pack_bits = FLINT_MAX(bound_bits, max_bits); /* need to pack original polys */
pack_limbs = (pack_bits - 1)/FLINT_BITS + 1;
if (pack_bits >= 32) /* pack into multiples of limbs if >= 32 bits */
pack_bits = FLINT_BITS*pack_limbs;
/* allocate space to pack into */
limbs1 = (pack_bits*len1 - 1)/FLINT_BITS + 1;
limbs2 = (pack_bits*len2 - 1)/FLINT_BITS + 1;
array1 = flint_calloc(limbs1, sizeof(mp_limb_t));
array2 = flint_calloc(limbs2, sizeof(mp_limb_t));
arrayg = flint_calloc(limbs2, sizeof(mp_limb_t));
/* pack first poly and normalise */
sign1 = (slong) fmpz_sgn(A + len1 - 1);
_fmpz_poly_bit_pack(array1, A, len1, pack_bits, sign1);
while (array1[limbs1 - 1] == 0) limbs1--;
/* pack second poly and normalise */
sign2 = (slong) fmpz_sgn(B + len2 - 1);
_fmpz_poly_bit_pack(array2, B, len2, pack_bits, sign2);
while (array2[limbs2 - 1] == 0) limbs2--;
/* compute integer GCD */
limbsg = flint_mpn_gcd_full(arrayg, array1, limbs1, array2, limbs2);
/*
Make space for unpacked gcd. May have one extra coeff due to
1 0 -x being packed as 0 -1 -x.
*/
glen = FLINT_MIN((limbsg*FLINT_BITS)/pack_bits + 1, len2);
G = _fmpz_vec_init(glen);
/*
clear bits after g in arrayg so they are not inadvertently
pulled into G after bit unpacking
*/
flint_mpn_zero(arrayg + limbsg, limbs2-limbsg);
/* unpack gcd */
_fmpz_poly_bit_unpack(G, glen, arrayg, pack_bits, 0);
while (G[glen - 1] == 0) glen--;
/* divide by any content */
fmpz_init(gc);
_fmpz_poly_content(gc, G, glen);
if (!fmpz_is_one(gc))
limbsg = flint_mpn_tdiv_q_fmpz_inplace(arrayg, limbsg, gc);
/* make space for quotient and remainder of first poly by gcd */
qlimbs = limbs1 - limbsg + 1;
qlen = FLINT_MIN(len1, (qlimbs*FLINT_BITS)/pack_bits + 1);
qlimbs = (qlen*pack_bits - 1)/FLINT_BITS + 1;
q = flint_calloc(qlimbs, sizeof(mp_limb_t));
temp = flint_malloc(limbsg*sizeof(mp_limb_t));
divides = 0;
if (flint_mpn_divides(q, array1, limbs1, arrayg, limbsg, temp))
{
/* unpack quotient of first poly by gcd */
Q = _fmpz_vec_init(len1);
t = _fmpz_vec_init(len1 + glen);
_fmpz_poly_bit_unpack(Q, qlen, q, pack_bits, 0);
while (Q[qlen - 1] == 0) qlen--;
/* divide by content */
_fmpz_vec_scalar_divexact_fmpz(G, G, glen, gc);
/* check if we really need to multiply out to check for exact quotient */
bits_G = FLINT_ABS(_fmpz_vec_max_bits(G, glen));
bits_Q = FLINT_ABS(_fmpz_vec_max_bits(Q, qlen));
log_glen = FLINT_BIT_COUNT(glen);
log_length = FLINT_MIN(log_glen, FLINT_BIT_COUNT(qlen));
divides = (bits_G + bits_Q + log_length < pack_bits);
if (!divides) /* need to multiply out to check exact quotient */
divides = multiplies_out(A, len1, Q, qlen, G, glen, sign1, t);
if (divides) /* quotient really was exact */
{
flint_mpn_zero(q, qlimbs);
if (flint_mpn_divides(q, array2, limbs2, arrayg, limbsg, temp))
{
/* unpack quotient of second poly by gcd */
qlimbs = limbs2 - limbsg + 1;
qlen = FLINT_MIN(len2, (qlimbs*FLINT_BITS - 1)/pack_bits + 1);
_fmpz_poly_bit_unpack(Q, qlen, q, pack_bits, 0);
while (Q[qlen - 1] == 0) qlen--;
/* check if we really need to multiply out to check for exact quotient */
bits_Q = FLINT_ABS(_fmpz_vec_max_bits(Q, qlen));
log_length = FLINT_MIN(log_glen, FLINT_BIT_COUNT(qlen));
divides = (bits_G + bits_Q + log_length < pack_bits);
if (!divides) /* we need to multiply out */
divides = multiplies_out(B, len2, Q, qlen, G, glen, sign1, t);
}
}
_fmpz_vec_clear(t, len1 + glen);
_fmpz_vec_clear(Q, len1);
}
flint_free(q);
flint_free(temp);
flint_free(arrayg);
flint_free(array1);
flint_free(array2);
fmpz_clear(gc);
_fmpz_vec_clear(A, len1);
_fmpz_vec_clear(B, len2);
/* we found the gcd, so multiply by content */
if (divides)
{
_fmpz_vec_zero(res + glen, len2 - glen);
_fmpz_vec_scalar_mul_fmpz(res, G, glen, d);
}
fmpz_clear(d);
_fmpz_vec_clear(G, glen);
return divides;
}
int
fmpz_poly_gcd_heuristic(fmpz_poly_t res, const fmpz_poly_t poly1,
const fmpz_poly_t poly2)
{
if (poly1->length < poly2->length)
{
return fmpz_poly_gcd_heuristic(res, poly2, poly1);
}
else /* len1 >= len2 >= 0 */
{
const slong len1 = poly1->length;
const slong len2 = poly2->length;
int done = 1; /* len1 = 0 or len2 = 0 need done = 1 */
if (len1 == 0) /* len1 = len2 = 0 */
{
fmpz_poly_zero(res);
}
else if (len2 == 0) /* len1 > len2 = 0 */
{
if (fmpz_sgn(poly1->coeffs + (len1 - 1)) > 0)
fmpz_poly_set(res, poly1);
else
fmpz_poly_neg(res, poly1);
}
else /* len1 >= len2 >= 1 */
{
/* underscore function automatically takes care of aliasing */
fmpz_poly_fit_length(res, len2);
done = _fmpz_poly_gcd_heuristic(res->coeffs, poly1->coeffs, len1,
poly2->coeffs, len2);
if (done)
{
_fmpz_poly_set_length(res, len2);
_fmpz_poly_normalise(res);
}
}
return done;
}
}