/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2006, 2011 William Hart ******************************************************************************/ #include #include #include #include "flint.h" #include "ulong_extras.h" #include "longlong.h" #include "qsieve.h" /* Array of possible Knuth-Schroeppel multipliers */ static const mp_limb_t multipliers[] = {1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 41, 42, 43, 47}; /* Number of possible Knuth-Schroeppel multipliers */ #define KS_MULTIPLIERS (sizeof(multipliers)/sizeof(mp_limb_t)) /* Try to compute a multiplier k such that there are a lot of small primes which are quadratic residues modulo kn. If a small weight of n is found during this process it is returned. */ mp_limb_t qsieve_ll_knuth_schroeppel(qs_t qs_inf) { float weights[KS_MULTIPLIERS]; /* array of Knuth-Schroeppel weights */ float best_weight = -10.0f; /* best weight so far */ ulong i; ulong num_primes, max; float logpdivp; mp_limb_t nmod8, mod8, p, nmod, pinv, mult; int kron, jac; if ((qs_inf->lo & 1) == 0) /* check 2 is not a factor */ return 2; /* initialise weights for each multiplier k depending on kn mod 8 */ nmod8 = qs_inf->lo % 8; /* n modulo 8 */ for (i = 0; i < KS_MULTIPLIERS; i++) { mod8 = ((nmod8*multipliers[i]) % 8); /* kn modulo 8 */ weights[i] = 0.34657359; /* ln2/2 */ if (mod8 == 1) weights[i] *= 4.0; if (mod8 == 5) weights[i] *= 2.0; weights[i] -= (log((float) multipliers[i]) / 2.0); } /* maximum number of primes to try may not exceed number of factor base primes (recall k and 2 are factor base primes) */ max = FLINT_MIN(qs_inf->ks_primes, qs_inf->num_primes - 2); #if QS_DEBUG flint_printf("Checking %wd Knuth-Schroeppel primes\n", max); #endif p = 3; for (num_primes = 0; num_primes < max; num_primes++) { pinv = n_preinvert_limb(p); /* compute precomputed inverse */ logpdivp = log((float) p) / (float) p; /* log p / p */ nmod = n_ll_mod_preinv(qs_inf->hi, qs_inf->lo, p, pinv); if (nmod == 0) return p; /* we found a small factor */ kron = 1; /* n mod p is even, not handled by n_jacobi */ while ((nmod % 2) == 0) { if ((p % 8) == 3 || (p % 8) == 5) kron *= -1; nmod /= 2; } kron *= n_jacobi(nmod, p); for (i = 0; i < KS_MULTIPLIERS; i++) { mult = multipliers[i]; if (mult >= p) mult = n_mod2_preinv(mult, p, pinv); /* k mod p */ if (mult == 0) weights[i] += logpdivp; /* kn == 0 mod p */ else { jac = 1; while ((mult % 2) == 0) /* k mod p is even, not handled by n_jacobi */ { if ((p % 8) == 3 || (p % 8) == 5) jac *= -1; mult /= 2; } if (kron*jac*n_jacobi(mult, p) == 1) /* kn is a square mod p */ weights[i] += 2.0*logpdivp; } } p = n_nextprime(p, 0); } /* search for the multiplier with the best weight and set qs_inf->k */ for (i = 0; i < KS_MULTIPLIERS; i++) { if (weights[i] > best_weight) { best_weight = weights[i]; qs_inf->k = multipliers[i]; } } #if QS_DEBUG flint_printf("Using multiplier %wd\n", qs_inf->k); #endif return 0; /* we didn't find any small factors */ }