/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2011 Jan Tuitman Copyright (C) 2011, 2012 Sebastian Pancratz ******************************************************************************/ #include "padic.h" /* Returns whether \code{op} has a square root modulo $p^N$ and if so sets \code{rop} to such an element. Assumes that \code{op} is a unit modulo $p^N$. Assumes $p$ is an odd prime. In the current implementation, allows aliasing. */ static int _padic_sqrt_p(fmpz_t rop, const fmpz_t op, const fmpz_t p, slong N) { int ans; if (N == 1) { ans = fmpz_sqrtmod(rop, op, p); return ans; } else { slong *e, i, n; fmpz *W, *pow, *u; e = _padic_lifts_exps(&n, N); W = _fmpz_vec_init(2 + 2 * n); pow = W + 2; u = W + (2 + n); _padic_lifts_pows(pow, e, n, p); /* Compute reduced units */ { fmpz_mod(u, op, pow); } for (i = 1; i < n; i++) { fmpz_mod(u + i, u + (i - 1), pow + i); } /* Run Newton iteration for the inverse square root, using the update formula z := z - z (u z^2 - 1) / 2 for all but the last step. The last step is replaced with b := u z mod p^{N'} z := b + z (u - b^2) / 2 mod p^{N}. */ i = n - 1; { ans = fmpz_sqrtmod(rop, u + i, p); if (!ans) goto exit; fmpz_invmod(rop, rop, p); } for (i--; i >= 1; i--) { fmpz_mul(W, rop, rop); fmpz_mul(W + 1, u + i, W); fmpz_sub_ui(W + 1, W + 1, 1); if (fmpz_is_odd(W + 1)) fmpz_add(W + 1, W + 1, pow + i); fmpz_fdiv_q_2exp(W + 1, W + 1, 1); fmpz_mul(W, W + 1, rop); fmpz_sub(rop, rop, W); fmpz_mod(rop, rop, pow + i); } { fmpz_mul(W, u + 1, rop); fmpz_mul(W + 1, W, W); fmpz_sub(W + 1, u + 0, W + 1); if (fmpz_is_odd(W + 1)) fmpz_add(W + 1, W + 1, pow + 0); fmpz_fdiv_q_2exp(W + 1, W + 1, 1); fmpz_mul(rop, rop, W + 1); fmpz_add(rop, W, rop); fmpz_mod(rop, rop, pow + 0); } exit: flint_free(e); _fmpz_vec_clear(W, 2 + 2 * n); return ans; } } /* Returns whether \code{op} has a square root modulo $2^N$ and if so sets \code{rop} to such an element. Assumes that \code{op} is a unit modulo $2^N$. In the current implementation, allows aliasing. */ static int _padic_sqrt_2(fmpz_t rop, const fmpz_t op, slong N) { if (fmpz_fdiv_ui(op, 8) != 1) return 0; if (N <= 3) { fmpz_one(rop); } else { slong *e, i, n; fmpz *W, *u; i = FLINT_CLOG2(N); /* Compute sequence of exponents */ e = flint_malloc((i + 2) * sizeof(slong)); for (e[i = 0] = N; e[i] > 3; i++) e[i + 1] = (e[i] + 3) / 2; n = i + 1; W = _fmpz_vec_init(2 + n); u = W + 2; /* Compute reduced units */ { fmpz_fdiv_r_2exp(u, op, e[0]); } for (i = 1; i < n; i++) { fmpz_fdiv_r_2exp(u + i, u + (i - 1), e[i]); } /* Run Newton iteration */ fmpz_one(rop); for (i = n - 2; i >= 1; i--) /* z := z - z (a z^2 - 1) / 2 */ { fmpz_mul(W, rop, rop); fmpz_mul(W + 1, u + i, W); fmpz_sub_ui(W + 1, W + 1, 1); fmpz_fdiv_q_2exp(W + 1, W + 1, 1); fmpz_mul(W, W + 1, rop); fmpz_sub(rop, rop, W); fmpz_fdiv_r_2exp(rop, rop, e[i]); } { fmpz_mul(W, u + 1, rop); fmpz_mul(W + 1, W, W); fmpz_sub(W + 1, u + 0, W + 1); fmpz_fdiv_q_2exp(W + 1, W + 1, 1); fmpz_mul(rop, rop, W + 1); fmpz_add(rop, W, rop); } fmpz_fdiv_r_2exp(rop, rop, e[0]); flint_free(e); _fmpz_vec_clear(W, 2 + n); } return 1; } int _padic_sqrt(fmpz_t rop, const fmpz_t op, const fmpz_t p, slong N) { if (fmpz_equal_ui(p, 2)) { return _padic_sqrt_2(rop, op, N); } else { return _padic_sqrt_p(rop, op, p, N); } } int padic_sqrt(padic_t rop, const padic_t op, const padic_ctx_t ctx) { if (padic_is_zero(op)) { padic_zero(rop); return 1; } if (padic_val(op) & WORD(1)) { return 0; } padic_val(rop) = padic_val(op) / 2; /* In this case, if there is a square root it will be zero modulo $p^N$. We only have to establish whether or not the element \code{op} is a square. */ if (padic_val(rop) >= padic_prec(rop)) { int ans; if (fmpz_equal_ui(ctx->p, 2)) { ans = (fmpz_fdiv_ui(padic_unit(op), 8) == 1); } else { ans = fmpz_sqrtmod(padic_unit(rop), padic_unit(op), ctx->p); } padic_zero(rop); return ans; } return _padic_sqrt(padic_unit(rop), padic_unit(op), ctx->p, padic_prec(rop) - padic_val(rop)); }