/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2010 Sebastian Pancratz Copyright (C) 2011 Fredrik Johansson ******************************************************************************/ #include #include "flint.h" #include "nmod_vec.h" #include "nmod_poly.h" #include "ulong_extras.h" /* pointer to (x/Q)^i */ #define Ri(ii) (R + (n-1)*((ii)-1)) void _nmod_poly_revert_series_lagrange_fast(mp_ptr Qinv, mp_srcptr Q, slong n, nmod_t mod) { slong i, j, k, m; mp_ptr R, S, T, tmp; if (n >= 1) Qinv[0] = UWORD(0); if (n >= 2) Qinv[1] = n_invmod(Q[1], mod.n); if (n <= 2) return; m = n_sqrt(n); R = _nmod_vec_init((n - 1) * m); S = _nmod_vec_init(n - 1); T = _nmod_vec_init(n - 1); _nmod_poly_inv_series(Ri(1), Q + 1, n - 1, mod); for (i = 2; i <= m; i++) _nmod_poly_mullow(Ri(i), Ri(i-1), n - 1, Ri(1), n - 1, n - 1, mod); for (i = 2; i < m; i++) Qinv[i] = nmod_div(Ri(i)[i-1], i, mod); _nmod_vec_set(S, Ri(m), n - 1); for (i = m; i < n; i += m) { Qinv[i] = nmod_div(S[i-1], i, mod); for (j = 1; j < m && i + j < n; j++) { mp_limb_t s; int nlimbs = _nmod_vec_dot_bound_limbs(i + j, mod); NMOD_VEC_DOT(s, k, i + j, S[k], Ri(j)[i+j-1-k], mod, nlimbs); Qinv[i+j] = nmod_div(s, i+j, mod); } if (i + 1 < n) { _nmod_poly_mullow(T, S, n - 1, Ri(m), n - 1, n - 1, mod); tmp = S; S = T; T = tmp; } } _nmod_vec_clear(R); _nmod_vec_clear(S); _nmod_vec_clear(T); } void nmod_poly_revert_series_lagrange_fast(nmod_poly_t Qinv, const nmod_poly_t Q, slong n) { mp_ptr Qinv_coeffs, Q_coeffs; nmod_poly_t t1; slong Qlen; Qlen = Q->length; if (Qlen < 2 || Q->coeffs[0] != 0 || Q->coeffs[1] == 0) { flint_printf("Exception (nmod_poly_revert_series_lagrange_fast). Input must \n" "have zero constant and an invertible coefficient of x^1.\n"); abort(); } if (Qlen < n) { Q_coeffs = _nmod_vec_init(n); flint_mpn_copyi(Q_coeffs, Q->coeffs, Qlen); flint_mpn_zero(Q_coeffs + Qlen, n - Qlen); } else Q_coeffs = Q->coeffs; if (Q == Qinv && Qlen >= n) { nmod_poly_init2(t1, Q->mod.n, n); Qinv_coeffs = t1->coeffs; } else { nmod_poly_fit_length(Qinv, n); Qinv_coeffs = Qinv->coeffs; } _nmod_poly_revert_series_lagrange_fast(Qinv_coeffs, Q_coeffs, n, Q->mod); if (Q == Qinv && Qlen >= n) { nmod_poly_swap(Qinv, t1); nmod_poly_clear(t1); } Qinv->length = n; if (Qlen < n) _nmod_vec_clear(Q_coeffs); _nmod_poly_normalise(Qinv); }