/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2012 Sebastian Pancratz Copyright (C) 2013 Mike Hansen ******************************************************************************/ #ifdef T #include "templates.h" /* Include routines for vectors over \code{fmpz_poly_struct}, for use in the classical multiplication routine in the $X$-direction. */ static fmpz_poly_struct * __vec_init(slong len) { slong i; fmpz_poly_struct *v; v = flint_malloc(len * sizeof(fmpz_poly_struct)); for (i = 0; i < len; i++) fmpz_poly_init(v + i); return v; } static fmpz_poly_struct * __vec_init2(slong len, slong n) { slong i; fmpz_poly_struct *v; v = flint_malloc(len * sizeof(fmpz_poly_struct)); for (i = 0; i < len; i++) fmpz_poly_init2(v + i, n); return v; } static void __vec_clear(fmpz_poly_struct * v, slong len) { slong i; for (i = 0; i < len; i++) fmpz_poly_clear(v + i); flint_free(v); } static void __scalar_addmul(fmpz_poly_struct * rop, const fmpz_poly_struct * op, slong len, const fmpz_poly_t x) { slong i; if (fmpz_poly_is_zero(x)) { return; } else if (fmpz_poly_is_one(x)) { for (i = 0; i < len; i++) fmpz_poly_add(rop + i, rop + i, op + i); } else { fmpz_poly_t t; fmpz_poly_init(t); for (i = 0; i < len; i++) { fmpz_poly_mul(t, op + i, x); fmpz_poly_add(rop + i, rop + i, t); } fmpz_poly_clear(t); } } static void __scalar_mul(fmpz_poly_struct * rop, const fmpz_poly_struct * op, slong len, const fmpz_poly_t x) { slong i; if (fmpz_poly_is_zero(x)) { for (i = 0; i < len; i++) fmpz_poly_zero(rop + i); } else if (fmpz_poly_is_one(x)) { for (i = 0; i < len; i++) fmpz_poly_set(rop + i, op + i); } else { for (i = 0; i < len; i++) fmpz_poly_mul(rop + i, op + i, x); } } static void __mul(fmpz_poly_struct * rop, fmpz_poly_struct * op1, slong len1, fmpz_poly_struct * op2, slong len2) { if (len1 == 1 && len2 == 1) { fmpz_poly_mul(rop, op1, op2); } else { slong i; __scalar_mul(rop, op1, len1, op2); __scalar_mul(rop + len1, op2 + 1, len2 - 1, op1 + len1 - 1); for (i = 0; i < len1 - 1; i++) __scalar_addmul(rop + i + 1, op2 + 1, len2 - 1, op1 + i); } } void _TEMPLATE(T, poly_mul_reorder) (TEMPLATE(T, struct) * rop, const TEMPLATE(T, struct) * op1, slong len1, const TEMPLATE(T, struct) * op2, slong len2, const TEMPLATE(T, ctx_t) ctx) { const slong d = TEMPLATE(T, ctx_degree) (ctx); fmpz_poly_struct *f, *g, *h; slong i, j, k, len; f = __vec_init(2 * d - 1); g = __vec_init2(d, len1); h = __vec_init2(d, len2); /* Convert (op1, len1) to (g, d) */ for (i = 0; i < len1; i++) for (j = 0; j < fmpz_poly_length(op1 + i); j++) fmpz_set((g + j)->coeffs + i, (op1 + i)->coeffs + j); /* Convert (op2, len2) to (h, d) */ for (i = 0; i < len2; i++) for (j = 0; j < fmpz_poly_length(op2 + i); j++) fmpz_set((h + j)->coeffs + i, (op2 + i)->coeffs + j); for (j = 0; j < d; j++) { _fmpz_poly_set_length(g + j, len1); _fmpz_poly_set_length(h + j, len2); _fmpz_poly_normalise(g + j); _fmpz_poly_normalise(h + j); } __mul(f, g, d, h, d); /* Normalise (f, len) */ len = 2 * d - 1; while ((len) && fmpz_poly_is_zero(f + (len - 1))) len--; /* Reduce (f, j) using polynomial operations */ if (len > d) { for (i = len - 1; i >= d; i--) { for (k = ctx->len - 2; k >= 0; k--) { fmpz_poly_scalar_submul_fmpz(f + ctx->j[k] + i - d, f + i, ctx->a + k); } fmpz_poly_zero(f + i); } } for (j = 0; j < FLINT_MIN(d, len); j++) fmpz_poly_scalar_mod_fmpz(f + j, f + j, TEMPLATE(T, ctx_prime) (ctx)); /* Convert (f, d) to (rop, len1 + len2 - 1) */ for (i = 0; i < len1 + len2 - 1; i++) { fmpz_poly_fit_length(rop + i, d); _fmpz_vec_zero((rop + i)->coeffs, d); } for (j = 0; j < d; j++) for (i = 0; i < fmpz_poly_length(f + j); i++) fmpz_set((rop + i)->coeffs + j, (f + j)->coeffs + i); for (i = 0; i < len1 + len2 - 1; i++) { _fmpz_poly_set_length(rop + i, d); _fmpz_poly_normalise(rop + i); } __vec_clear(f, 2 * d - 1); __vec_clear(g, d); __vec_clear(h, d); } void TEMPLATE(T, poly_mul_reorder) (TEMPLATE(T, poly_t) rop, const TEMPLATE(T, poly_t) op1, const TEMPLATE(T, poly_t) op2, const TEMPLATE(T, ctx_t) ctx) { const slong len = op1->length + op2->length - 1; if (op1->length == 0 || op2->length == 0) { TEMPLATE(T, poly_zero) (rop, ctx); } else { TEMPLATE(T, poly_fit_length) (rop, len, ctx); _TEMPLATE(T, poly_mul_reorder) (rop->coeffs, op1->coeffs, op1->length, op2->coeffs, op2->length, ctx); _TEMPLATE(T, poly_set_length) (rop, len, ctx); } } #endif