/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2006, 2011 William Hart ******************************************************************************/ #define ulong ulongxx /* interferes with system includes */ #include #include #include #undef ulong #define ulong mp_limb_t #include #include "flint.h" #include "ulong_extras.h" #include "qsieve.h" #include "fmpz.h" void qsieve_ll_do_sieving(qs_t qs_inf, char * sieve) { slong num_primes = qs_inf->num_primes; mp_limb_t * soln1 = qs_inf->soln1; mp_limb_t * soln2 = qs_inf->soln2; prime_t * factor_base = qs_inf->factor_base; mp_limb_t p; char * end = sieve + qs_inf->sieve_size; register char * pos1; register char * pos2; register char * bound; slong size; slong diff; slong pind; memset(sieve, 0, qs_inf->sieve_size + sizeof(ulong)); *end = (char) 255; for (pind = qs_inf->small_primes; pind < num_primes; pind++) { if (soln2[pind] == -1) continue; /* don't sieve with A factors */ p = factor_base[pind].p; size = factor_base[pind].size; pos1 = sieve + soln1[pind]; pos2 = sieve + soln2[pind]; diff = pos2 - pos1; bound = end - 2*p; while (bound - pos1 > 0) { (*pos1) += size, (*(pos1 + diff)) += size, pos1 += p; (*pos1) += size, (*(pos1 + diff)) += size, pos1 += p; } while ((end - pos1 > 0) && (end - pos1 - diff > 0)) { (*pos1) += size, (*(pos1 + diff)) += size, pos1 += p; } pos2 = pos1 + diff; if (end - pos2 > 0) { (*pos2) += size; } if (end - pos1 > 0) { (*pos1) += size; } } } slong qsieve_ll_evaluate_candidate(qs_t qs_inf, slong i, char * sieve) { slong bits, exp, extra_bits; mp_limb_t modp, prime; slong num_primes = qs_inf->num_primes; prime_t * factor_base = qs_inf->factor_base; fac_t * factor = qs_inf->factor; mp_limb_t * soln1 = qs_inf->soln1; mp_limb_t * soln2 = qs_inf->soln2; slong * small = qs_inf->small; mp_limb_t A = qs_inf->A; mp_limb_t B = qs_inf->B; mp_limb_t pinv; slong num_factors = 0; slong relations = 0; slong j; fmpz_t X, Y, res, p; fmpz_init(X); fmpz_init(Y); fmpz_init(res); fmpz_init(p); fmpz_set_ui(X, i); fmpz_sub_ui(X, X, qs_inf->sieve_size/2); /* X */ #if (QS_DEBUG & 32) flint_printf("i = "); fmpz_print(X); flint_printf("\n"); #endif fmpz_mul_ui(Y, X, A); if ((mp_limb_signed_t) B < 0) { fmpz_sub_ui(Y, Y, -B); /* Y = AX + B */ fmpz_sub_ui(res, Y, -B); } else { fmpz_add_ui(Y, Y, B); fmpz_add_ui(res, Y, B); } fmpz_mul(res, res, X); fmpz_add(res, res, qs_inf->C); /* res = AX^2 + 2BX + C */ bits = FLINT_ABS(fmpz_bits(res)); bits -= BITS_ADJUST; extra_bits = 0; fmpz_set_ui(p, 2); /* divide out by powers of 2 */ exp = fmpz_remove(res, res, p); #if (QS_DEBUG & 8) if (exp) flint_printf("2^%wd ", exp); #endif extra_bits += exp; small[1] = exp; if (factor_base[0].p != 1) /* divide out powers of the multiplier */ { fmpz_set_ui(p, factor_base[0].p); exp = fmpz_remove(res, res, p); if (exp) extra_bits += exp*qs_inf->factor_base[0].size; small[0] = exp; #if (QS_DEBUG & 8) if (exp) flint_printf("%d^%wd ", factor_base[0].p, exp); #endif } else small[0] = 0; for (j = 2; j < qs_inf->small_primes; j++) /* pull out small primes */ { prime = factor_base[j].p; pinv = factor_base[j].pinv; modp = n_mod2_preinv(i, prime, pinv); if ((modp == soln1[j]) || (modp == soln2[j])) { fmpz_set_ui(p, prime); exp = fmpz_remove(res, res, p); if (exp) extra_bits += qs_inf->factor_base[j].size; small[j] = exp; #if (QS_DEBUG & 8) if (exp) { fmpz_print(p); flint_printf("^%wd ", exp); } #endif } else small[j] = 0; } if (extra_bits + sieve[i] > bits) { sieve[i] += extra_bits; /* pull out remaining primes */ for (j = qs_inf->small_primes; j < num_primes && extra_bits < sieve[i]; j++) { prime = factor_base[j].p; pinv = factor_base[j].pinv; modp = n_mod2_preinv(i, prime, pinv); if (soln2[j] != -1) { if ((modp == soln1[j]) || (modp == soln2[j])) { fmpz_set_ui(p, prime); exp = fmpz_remove(res, res, p); #if (QS_DEBUG & 8) if (exp) { fmpz_print(p); flint_printf("^%wd ", exp); } #endif if (exp) { extra_bits += qs_inf->factor_base[j].size; factor[num_factors].ind = j; factor[num_factors++].exp = exp; } } } else { fmpz_set_ui(p, prime); exp = fmpz_remove(res, res, p); factor[num_factors].ind = j; factor[num_factors++].exp = exp + 1; #if (QS_DEBUG & 8) if (exp) { fmpz_print(p); flint_printf("^%wd ", exp); } #endif } } if (fmpz_cmp_ui(res, 1) == 0 || fmpz_cmp_si(res, -1) == 0) /* We've found a relation */ { mp_limb_t * A_ind = qs_inf->A_ind; slong i; for (i = 0; i < qs_inf->s; i++) /* Commit any outstanding A factors */ { if (A_ind[i] >= j) { factor[num_factors].ind = A_ind[i]; factor[num_factors++].exp = 1; } } qs_inf->num_factors = num_factors; relations += qsieve_ll_insert_relation(qs_inf, Y); /* Insert the relation in the matrix */ if (qs_inf->num_relations >= qs_inf->buffer_size) { flint_printf("Error: too many duplicate relations!\n"); flint_printf("s = %wd, bits = %wd\n", qs_inf->s, qs_inf->bits); abort(); } goto cleanup; } } #if (QS_DEBUG & 8) flint_printf("\n"); #endif cleanup: fmpz_clear(X); fmpz_clear(Y); fmpz_clear(res); fmpz_clear(p); return relations; } slong qsieve_ll_evaluate_sieve(qs_t qs_inf, char * sieve) { slong i = 0, j = 0; ulong * sieve2 = (ulong *) sieve; char bits = qs_inf->sieve_bits; slong rels = 0; #if (QS_DEBUG & 16) slong stats_limit; for (i = 0; i < 256; i++) qs_inf->sieve_tally[i] = 0; #endif #if (QS_DEBUG & 4) flint_printf("%wdX^2+2*%wdX+", qs_inf->A, qs_inf->B); fmpz_print(qs_inf->C); flint_printf("\n"); #endif while (j < qs_inf->sieve_size/sizeof(ulong)) { #if FLINT64 while ((sieve2[j] & UWORD(0xE0E0E0E0E0E0E0E0)) == 0) #else while ((sieve2[j] & UWORD(0xE0E0E0E0)) == 0) #endif { #if (QS_DEBUG & 16) for (i = j*sizeof(ulong); i < (j+1)*sizeof(ulong) && i < qs_inf->sieve_size; i++) qs_inf->sieve_tally[(int)sieve[i]]++; #endif j++; } i = j*sizeof(ulong); while (i < (j+1)*sizeof(ulong) && i < qs_inf->sieve_size) { #if (QS_DEBUG & 16) qs_inf->sieve_tally[(int)sieve[i]]++; #endif if (sieve[i] > bits) rels += qsieve_ll_evaluate_candidate(qs_inf, i, sieve); i++; } j++; } #if (QS_DEBUG & 16) for (stats_limit = 255; stats_limit >= 0; stats_limit--) if (qs_inf->sieve_tally[stats_limit] != 0) break; for (i = 0; i <= stats_limit; i++) { if ((i % 16) == 0) flint_printf("|%wd:", i); flint_printf(" %wd", qs_inf->sieve_tally[i]); } flint_printf("|\n"); flint_printf("Total of %wd relations for this sieve interval\n", rels); #endif return rels; } void qsieve_ll_update_offsets(int poly_add, mp_limb_t * poly_corr, qs_t qs_inf) { slong num_primes = qs_inf->num_primes; mp_limb_t * soln1 = qs_inf->soln1; mp_limb_t * soln2 = qs_inf->soln2; prime_t * factor_base = qs_inf->factor_base; mp_limb_t p, correction; slong pind; for (pind = 2; pind < num_primes; pind++) { p = factor_base[pind].p; correction = (poly_add ? p - poly_corr[pind] : poly_corr[pind]); soln1[pind] += correction; if (soln1[pind] >= p) soln1[pind] -= p; if (soln2[pind] == -1) continue; soln2[pind] += correction; if (soln2[pind] >= p) soln2[pind] -= p; } } slong qsieve_ll_collect_relations(qs_t qs_inf, char * sieve) { slong s = qs_inf->s; mp_limb_t ** A_inv2B = qs_inf->A_inv2B; mp_limb_t * poly_corr; slong relations = 0; slong poly_index, j; int poly_add; qsieve_ll_compute_poly_data(qs_inf); for (poly_index = 1; poly_index < (1<<(s - 1)); poly_index++) { for (j = 0; j < s; j++) if (((poly_index >> j) & UWORD(1)) != UWORD(0)) break; poly_add = ((poly_index >> j) & 2); poly_corr = A_inv2B[j]; qsieve_ll_do_sieving(qs_inf, sieve); relations += qsieve_ll_evaluate_sieve(qs_inf, sieve); qsieve_ll_update_offsets(poly_add, poly_corr, qs_inf); if (poly_add) qs_inf->B += (2*qs_inf->B_terms[j]); else qs_inf->B -= (2*qs_inf->B_terms[j]); qsieve_ll_compute_C(qs_inf); qsieve_ll_compute_A_factor_offsets(qs_inf); if (qs_inf->columns >= qs_inf->num_primes + qs_inf->extra_rels) break; } if (qs_inf->columns < qs_inf->num_primes + qs_inf->extra_rels) { qsieve_ll_do_sieving(qs_inf, sieve); relations += qsieve_ll_evaluate_sieve(qs_inf, sieve); relations += qsieve_ll_merge_relations(qs_inf); } return relations; }