/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2012 Lina Kulakova ******************************************************************************/ #include #include #include #include #include #include #include "flint.h" #include "nmod_poly.h" #define NP 100 /* number of moduli */ #define ND 8 /* number of degrees */ /* Benchmarking code for factorisation in nmod_poly. Test how the relation between n (degree of polynomial) and p affects working time for Cantor-Zassenhaus, Berlekamp and Kaltofen-Shoup algorithms. p and n are chosen independently. */ int main(void) { FLINT_TEST_INIT(state); nmod_poly_t f, g; nmod_poly_factor_t res; mp_limb_t modulus; int i, j, k, n, num; double t, T1, T2, T3, T4; const slong degs[] = {8, 16, 32, 64, 128, 256, 512, 1024}; const int iter_count[] = {10000, 5000, 1000, 500, 300, 100, 50, 20}; flint_printf("Random polynomials\n"); for (i = 0; i < NP; i++) { modulus = n_randtest_prime(state, 0); flint_printf("========== p: %wu\n", modulus); fflush(stdout); for (j = 0; j < ND; j++) { n = degs[j]; flint_printf(">>>>>n: %d\n", n); fflush(stdout); T1 = 0; T2 = 0; T3 = 0; for (k = 0; k < iter_count[j]; k++) { nmod_poly_init(f, modulus); nmod_poly_randtest_not_zero(f, state, n); t = clock(); nmod_poly_factor_init(res); nmod_poly_factor_with_cantor_zassenhaus(res, f); nmod_poly_factor_clear(res); t = (clock() - t) / CLOCKS_PER_SEC; T1 += t; t = clock(); nmod_poly_factor_init(res); nmod_poly_factor_with_berlekamp(res, f); nmod_poly_factor_clear(res); t = (clock() - t) / CLOCKS_PER_SEC; T2 += t; t = clock(); nmod_poly_factor_init(res); nmod_poly_factor_kaltofen_shoup(res, f); nmod_poly_factor_clear(res); t = (clock() - t) / CLOCKS_PER_SEC; T3 += t; nmod_poly_clear(f); } flint_printf("CZ: %.2lf B: %.2lf KS: %.2lf\n", T1, T2, T3); fflush(stdout); if (T1 > T3 + 1) break; } } /* This code checks whether nmod_poly_factor made a correct choice between CZ, B and KS */ flint_printf("Check choice correctness\n"); for (i = 0; i < NP; i++) { modulus = n_randtest_prime(state, 0); flint_printf("========== p: %wu\n", modulus); fflush(stdout); for (j = 0; j < ND; j++) { n = degs[j]; flint_printf(">>>>>n: %d\n", n); fflush(stdout); T1 = 0; T2 = 0; T3 = 0; T4 = 0; for (k = 0; k < iter_count[j]; k++) { nmod_poly_init(f, modulus); nmod_poly_randtest_not_zero(f, state, n); t = clock(); nmod_poly_factor_init(res); nmod_poly_factor_with_cantor_zassenhaus(res, f); nmod_poly_factor_clear(res); t = (clock() - t) / CLOCKS_PER_SEC; T1 += t; t = clock(); nmod_poly_factor_init(res); nmod_poly_factor_berlekamp(res, f); nmod_poly_factor_clear(res); t = (clock() - t) / CLOCKS_PER_SEC; T2 += t; t = clock(); nmod_poly_factor_init(res); nmod_poly_factor_kaltofen_shoup(res, f); nmod_poly_factor_clear(res); t = (clock() - t) / CLOCKS_PER_SEC; T3 += t; t = clock(); nmod_poly_factor_init(res); nmod_poly_factor(res, f); nmod_poly_factor_clear(res); t = (clock() - t) / CLOCKS_PER_SEC; T4 += t; nmod_poly_clear(f); } flint_printf("CZ: %.2lf B: %.2lf KS: %.2lf F: %.2lf\n", T1, T2, T3, T4); fflush(stdout); if (T1 > T3 + 1) break; } } flint_printf("Irreducible polynomials\n"); for (i = 0; i < NP; i++) { modulus = n_randtest_prime(state, 0); flint_printf("========== p: %wu\n", modulus); fflush(stdout); for (j = 0; j < ND; j++) { n = degs[j]; flint_printf(">>>>>n: %d\n", n); fflush(stdout); T1 = 0; T2 = 0; T3 = 0; for (k = 0; k < iter_count[j]; k++) { nmod_poly_init(f, modulus); nmod_poly_randtest_irreducible(f, state, n); t = clock(); nmod_poly_factor_init(res); nmod_poly_factor_with_cantor_zassenhaus(res, f); nmod_poly_factor_clear(res); t = (clock() - t) / CLOCKS_PER_SEC; T1 += t; t = clock(); nmod_poly_factor_init(res); nmod_poly_factor_with_berlekamp(res, f); nmod_poly_factor_clear(res); t = (clock() - t) / CLOCKS_PER_SEC; T2 += t; t = clock(); nmod_poly_factor_init(res); nmod_poly_factor_kaltofen_shoup(res, f); nmod_poly_factor_clear(res); t = (clock() - t) / CLOCKS_PER_SEC; T3 += t; nmod_poly_clear(f); } flint_printf("CZ: %.2lf B: %.2lf KS: %.2lf\n", T1, T2, T3); fflush(stdout); if (T1 > T3 + 1) break; } } flint_printf("Product of two irreducible polynomials\n"); for (i = 0; i < NP; i++) { modulus = n_randtest_prime(state, 0); flint_printf("========== p: %wu\n", modulus); fflush(stdout); for (j = 0; j < ND; j++) { n = (degs[j] >> 1); flint_printf(">>>>>n: %d\n", n); fflush(stdout); T1 = 0; T2 = 0; T3 = 0; for (k = 0; k < iter_count[j]; k++) { nmod_poly_init(f, modulus); nmod_poly_init(g, modulus); nmod_poly_randtest_irreducible(f, state, n); nmod_poly_randtest_irreducible(g, state, n); nmod_poly_mul(f, f, g); t = clock(); nmod_poly_factor_init(res); nmod_poly_factor_with_cantor_zassenhaus(res, f); nmod_poly_factor_clear(res); t = (clock() - t) / CLOCKS_PER_SEC; T1 += t; t = clock(); nmod_poly_factor_init(res); nmod_poly_factor_with_berlekamp(res, f); nmod_poly_factor_clear(res); t = (clock() - t) / CLOCKS_PER_SEC; T2 += t; t = clock(); nmod_poly_factor_init(res); nmod_poly_factor_kaltofen_shoup(res, f); nmod_poly_factor_clear(res); t = (clock() - t) / CLOCKS_PER_SEC; T3 += t; nmod_poly_clear(f); nmod_poly_clear(g); } flint_printf("CZ: %.2lf B: %.2lf KS: %.2lf\n", T1, T2, T3); fflush(stdout); if (T1 > T3 + 1) break; } } flint_printf("Product of 8 small irreducible polynomials\n"); for (i = 0; i < NP; i++) { modulus = n_randtest_prime(state, 0); flint_printf("========== p: %wu\n", modulus); fflush(stdout); for (j = 1; j < ND; j++) { n = (degs[j] >> 3); flint_printf(">>>>>n: %d\n", n); fflush(stdout); T1 = 0; T2 = 0; T3 = 0; for (k = 0; k < iter_count[j]; k++) { nmod_poly_init(f, modulus); nmod_poly_init(g, modulus); nmod_poly_randtest_irreducible(f, state, n); for (num = 1; num < 8; num++) { nmod_poly_randtest_irreducible(g, state, n); nmod_poly_mul(f, f, g); } t = clock(); nmod_poly_factor_init(res); nmod_poly_factor_with_cantor_zassenhaus(res, f); nmod_poly_factor_clear(res); t = (clock() - t) / CLOCKS_PER_SEC; T1 += t; t = clock(); nmod_poly_factor_init(res); nmod_poly_factor_with_berlekamp(res, f); nmod_poly_factor_clear(res); t = (clock() - t) / CLOCKS_PER_SEC; T2 += t; t = clock(); nmod_poly_factor_init(res); nmod_poly_factor_kaltofen_shoup(res, f); nmod_poly_factor_clear(res); t = (clock() - t) / CLOCKS_PER_SEC; T3 += t; nmod_poly_clear(f); nmod_poly_clear(g); } flint_printf("CZ: %.2lf B: %.2lf KS: %.2lf\n", T1, T2, T3); fflush(stdout); if (T1 > T3 + 1) break; } } flint_randclear(state); return EXIT_SUCCESS; }