/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2012 Sebastian Pancratz Copyright (C) 2013 Mike Hansen ******************************************************************************/ /* Demo FLINT program to demonstrate some use of the fq_poly module. */ #include #include "fq_poly.h" int main(void) { fmpz_t p; long d, i; fq_ctx_t ctx; clock_t c0, c1; double c; fq_poly_t f, g, h; FLINT_TEST_INIT(state); fq_poly_init(f, ctx); fq_poly_init(g, ctx); fq_poly_init(h, ctx); printf("Polynomial multiplication over GF(q)\n"); printf("------------------------------------\n"); { printf("1) Two length-10,000 polynomials over GF(3^2)\n"); fmpz_init_set_ui(p, 3); d = 2; fq_ctx_init_conway(ctx, p, d, "X"); fq_poly_randtest(g, state, 10000, ctx); fq_poly_randtest(h, state, 10000, ctx); c0 = clock(); fq_poly_mul_classical(f, g, h, ctx); c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; printf("Classical: %fs\n", c); c0 = clock(); for (i = 0; i < 100; i++) fq_poly_mul_reorder(f, g, h, ctx); c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; printf("Reorder: %fms\n", 10 * c); c0 = clock(); for (i = 0; i < 100; i++) fq_poly_mul_KS(f, g, h, ctx); c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; printf("KS: %fms\n", 10 * c); fq_ctx_clear(ctx); fmpz_clear(p); } { printf("2) Two length-500 polynomials over GF(3^263)\n"); fmpz_init_set_ui(p, 3); d = 263; fq_ctx_init_conway(ctx, p, d, "X"); fq_poly_randtest(g, state, 500, ctx); fq_poly_randtest(h, state, 500, ctx); c0 = clock(); fq_poly_mul_classical(f, g, h, ctx); c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; printf("Classical: %fs\n", c); c0 = clock(); fq_poly_mul_reorder(f, g, h, ctx); c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; printf("Reorder: %fs\n", c); c0 = clock(); for (i = 0; i < 100; i++) fq_poly_mul_KS(f, g, h, ctx); c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; printf("KS: %fms\n", 10 * c); fq_ctx_clear(ctx); fmpz_clear(p); } { printf("3) Two length-5 polynomials over GF(109987^4)\n"); fmpz_init_set_ui(p, 109987); d = 4; fq_ctx_init_conway(ctx, p, d, "X"); fq_poly_randtest(g, state, 4, ctx); fq_poly_randtest(h, state, 4, ctx); c0 = clock(); for (i = 0; i < 1000 * 100; i++) fq_poly_mul_classical(f, g, h, ctx); c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; printf("Classical: %f\xb5s\n", 10 * c); c0 = clock(); for (i = 0; i < 1000 * 100; i++) fq_poly_mul_reorder(f, g, h, ctx); c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; printf("Reorder: %f\xb5s\n", 10 * c); c0 = clock(); for (i = 0; i < 1000 * 100; i++) fq_poly_mul_KS(f, g, h, ctx); c1 = clock(); c = (double) (c1 - c0) / CLOCKS_PER_SEC; printf("KS: %f\xb5s\n", 10 * c); fq_ctx_clear(ctx); fmpz_clear(p); } fq_poly_clear(f, ctx); fq_poly_clear(g, ctx); fq_poly_clear(h, ctx); FLINT_TEST_CLEANUP(state); return EXIT_SUCCESS; }