/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2010 Sebastian Pancratz ******************************************************************************/ #include #include #include "flint.h" #include "fmpz.h" #include "fmpz_vec.h" #include "fmpq_poly.h" void _fmpq_poly_div(fmpz * Q, fmpz_t q, const fmpz * A, const fmpz_t a, slong lenA, const fmpz * B, const fmpz_t b, slong lenB, const fmpz_preinvn_t inv) { slong lenQ = lenA - lenB + 1; ulong d; const fmpz * lead = B + (lenB - 1); if (lenB == 1) { _fmpq_poly_scalar_div_fmpq(Q, q, A, a, lenA, B, b); return; } /* From pseudo division over Z we have lead^d * A = Q * B + R and thus {A, a} = {b * Q, a * lead^d} * {B, b} + {R, a * lead^d}. */ _fmpz_poly_pseudo_div(Q, &d, A, lenA, B, lenB, inv); /* 1. lead^d == +-1. {Q, q} = {b Q, a} up to sign */ if (d == UWORD(0) || *lead == WORD(1) || *lead == WORD(-1)) { fmpz_one(q); _fmpq_poly_scalar_mul_fmpz(Q, q, Q, q, lenQ, b); _fmpq_poly_scalar_div_fmpz(Q, q, Q, q, lenQ, a); if (*lead == WORD(-1) && d % UWORD(2)) _fmpz_vec_neg(Q, Q, lenQ); } /* 2. lead^d != +-1. {Q, q} = {b Q, a lead^d} */ else { /* TODO: Improve this. Clearly we do not need to compute den = a lead^d in many cases, but can determine the GCD from lead alone already. */ fmpz_t den; fmpz_init(den); fmpz_pow_ui(den, lead, d); fmpz_mul(den, a, den); fmpz_one(q); _fmpq_poly_scalar_mul_fmpz(Q, q, Q, q, lenQ, b); _fmpq_poly_scalar_div_fmpz(Q, q, Q, q, lenQ, den); fmpz_clear(den); } } void fmpq_poly_div(fmpq_poly_t Q, const fmpq_poly_t poly1, const fmpq_poly_t poly2) { slong lenA, lenB, lenQ; if (fmpq_poly_is_zero(poly2)) { flint_printf("Exception (fmpq_poly_div). Division by zero.\n"); abort(); } if (poly1->length < poly2->length) { fmpq_poly_zero(Q); return; } /* Deal with aliasing */ if (Q == poly1 || Q == poly2) { fmpq_poly_t tempQ; fmpq_poly_init(tempQ); fmpq_poly_div(tempQ, poly1, poly2); fmpq_poly_swap(Q, tempQ); fmpq_poly_clear(tempQ); return; } lenA = poly1->length; lenB = poly2->length; lenQ = lenA - lenB + 1; fmpq_poly_fit_length(Q, lenQ); _fmpq_poly_div(Q->coeffs, Q->den, poly1->coeffs, poly1->den, poly1->length, poly2->coeffs, poly2->den, poly2->length, NULL); _fmpq_poly_set_length(Q, lenQ); }