/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2010 Sebastian Pancratz Copyright (C) 2011 Fredrik Johansson ******************************************************************************/ #include #include "flint.h" #include "fmpz.h" #include "fmpz_vec.h" #include "fmpz_poly.h" #include "fmpq_poly.h" #include "fmpq.h" #include "fmpq_mat.h" #include "ulong_extras.h" static void _fmpq_mat_get_row(fmpz * rnum, fmpz_t den, fmpq_mat_t A, slong i) { slong j; fmpz_t t; fmpz_init(t); fmpz_one(den); for (j = 0; j < fmpq_mat_ncols(A); j++) fmpz_lcm(den, den, fmpq_mat_entry_den(A, i, j)); for (j = 0; j < fmpq_mat_ncols(A); j++) { fmpz_divexact(t, den, fmpq_mat_entry_den(A, i, j)); fmpz_mul(rnum + j, fmpq_mat_entry_num(A, i, j), t); } fmpz_clear(t); } void _fmpq_poly_compose_series_brent_kung(fmpz * res, fmpz_t den, const fmpz * poly1, const fmpz_t den1, slong len1, const fmpz * poly2, const fmpz_t den2, slong len2, slong n) { fmpq_mat_t A, B, C; fmpz_t tden, uden, hden; fmpz *t, *u, *h, *swap; slong i, j, m; if (fmpz_is_one(den2)) { _fmpz_poly_compose_series(res, poly1, len1, poly2, len2, n); fmpz_set(den, den1); _fmpq_poly_canonicalise(res, den, n); return; } if (n == 1) { fmpz_set(res, poly1); fmpz_set(den, den1); _fmpq_poly_canonicalise(res, den, 1); return; } m = n_sqrt(n) + 1; fmpq_mat_init(A, m, n); fmpq_mat_init(B, m, m); fmpq_mat_init(C, m, n); fmpz_init(tden); fmpz_init(uden); fmpz_init(hden); h = _fmpz_vec_init(n); t = _fmpz_vec_init(n); u = _fmpz_vec_init(n); /* Set rows of B to the segments of poly1 */ for (i = 0; i < len1; i++) { fmpz_set(fmpq_mat_entry_num(B, i / m, i % m), poly1 + i); fmpz_set(fmpq_mat_entry_den(B, i / m, i % m), den1); fmpq_canonicalise(fmpq_mat_entry(B, i / m, i % m)); } /* Set rows of A to powers of poly2 */ fmpq_set_si(fmpq_mat_entry(A, 0, 0), WORD(1), WORD(1)); for (i = 0; i < len2; i++) { fmpz_set(fmpq_mat_entry_num(A, 1, i), poly2 + i); fmpz_set(fmpq_mat_entry_den(A, 1, i), den2); fmpq_canonicalise(fmpq_mat_entry(A, 1, i)); } _fmpz_vec_set(h, poly2, len2); fmpz_set(hden, den2); for (i = 2; i < m; i++) { _fmpq_poly_mullow(t, tden, h, hden, n, poly2, den2, len2, n); _fmpq_poly_canonicalise(t, tden, n); for (j = 0; j < n; j++) { fmpz_set(fmpq_mat_entry_num(A, i, j), t + j); fmpz_set(fmpq_mat_entry_den(A, i, j), tden); fmpq_canonicalise(fmpq_mat_entry(A, i, j)); } swap = t; t = h; h = swap; fmpz_swap(hden, tden); } /* Compute h = poly2 ^ m */ _fmpq_poly_mullow(t, tden, h, hden, n, poly2, den2, len2, n); _fmpq_poly_canonicalise(t, tden, n); swap = t; t = h; h = swap; fmpz_swap(hden, tden); /* Matrix multiply */ fmpq_mat_mul(C, B, A); fmpq_mat_clear(A); fmpq_mat_clear(B); /* Evaluate block composition using the Horner scheme */ _fmpq_mat_get_row(res, den, C, m - 1); for (i = m - 2; i >= 0; i--) { _fmpq_poly_mullow(t, tden, res, den, n, h, hden, n, n); /* we could canonicalise t here, but it does not seem to make much of a difference */ _fmpq_mat_get_row(u, uden, C, i); _fmpq_poly_add(res, den, t, tden, n, u, uden, n); } _fmpq_poly_canonicalise(res, den, n); fmpq_mat_clear(C); _fmpz_vec_clear(t, n); _fmpz_vec_clear(u, n); _fmpz_vec_clear(h, n); fmpz_clear(tden); fmpz_clear(uden); fmpz_clear(hden); } void fmpq_poly_compose_series_brent_kung(fmpq_poly_t res, const fmpq_poly_t poly1, const fmpq_poly_t poly2, slong n) { slong len1 = poly1->length; slong len2 = poly2->length; slong lenr; if (len2 != 0 && !fmpz_is_zero(poly2->coeffs)) { flint_printf("Exception (fmpq_poly_compose_series_brent_kung). \n" "Inner polynomial must have zero constant term.\n"); abort(); } if (len1 == 0 || n == 0) { fmpq_poly_zero(res); return; } if (len2 == 0 || len1 == 1) { fmpq_poly_fit_length(res, 1); fmpz_set(res->coeffs, poly1->coeffs); fmpz_set(res->den, poly1->den); { fmpz_t d; fmpz_init(d); fmpz_gcd(d, res->coeffs, res->den); if (!fmpz_is_one(d)) { fmpz_divexact(res->coeffs, res->coeffs, d); fmpz_divexact(res->den, res->den, d); } fmpz_clear(d); } _fmpq_poly_set_length(res, 1); _fmpq_poly_normalise(res); return; } lenr = FLINT_MIN((len1 - 1) * (len2 - 1) + 1, n); len1 = FLINT_MIN(len1, lenr); len2 = FLINT_MIN(len2, lenr); if ((res != poly1) && (res != poly2)) { fmpq_poly_fit_length(res, lenr); _fmpq_poly_compose_series_brent_kung(res->coeffs, res->den, poly1->coeffs, poly1->den, len1, poly2->coeffs, poly2->den, len2, lenr); _fmpq_poly_set_length(res, lenr); _fmpq_poly_normalise(res); } else { fmpq_poly_t t; fmpq_poly_init2(t, lenr); _fmpq_poly_compose_series_brent_kung(t->coeffs, t->den, poly1->coeffs, poly1->den, len1, poly2->coeffs, poly2->den, len2, lenr); _fmpq_poly_set_length(t, lenr); _fmpq_poly_normalise(t); fmpq_poly_swap(res, t); fmpq_poly_clear(t); } }