/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2013 Mike Hansen ******************************************************************************/ ******************************************************************************* Context Management ******************************************************************************* void fq_zech_ctx_init(fq_zech_ctx_t ctx, const fmpz_t p, slong d, const char *var) Initialises the context for prime~$p$ and extension degree~$d$, with name \code{var} for the generator. By default, it will try use a Conway polynomial; if one is not available, a random irreducible polynomial will be used. Assumes that $p$ is a prime and $p^d < 2^{FLINT_BITS}$. Assumes that the string \code{var} is a null-terminated string of length at least one. int _fq_zech_ctx_init_conway(fq_zech_ctx_t ctx, const fmpz_t p, slong d, const char *var) Attempts to initialise the context for prime~$p$ and extension degree~$d$, with name \code{var} for the generator using a Conway polynomial for the modulus. Returns $1$ if the Conway polynomial is in the database for the given size and the initialization is successful; otherwise, returns $0$. Assumes that $p$ is a prime and $p^d < 2^{FLINT_BITS}$. Assumes that the string \code{var} is a null-terminated string of length at least one. void fq_zech_ctx_init_conway(fq_zech_ctx_t ctx, const fmpz_t p, slong d, const char *var) Initialises the context for prime~$p$ and extension degree~$d$, with name \code{var} for the generator using a Conway polynomial for the modulus. Assumes that $p$ is a prime and $p^d < 2^{FLINT_BITS}$. Assumes that the string \code{var} is a null-terminated string of length at least one. void fq_zech_ctx_init_modulus(fq_zech_ctx_t ctx nmod_poly_t modulus, const char *var) Initialises the context for given \code{modulus} with name \code{var} for the generator. Assumes that \code{modulus} is and irreducible polynomial over $\mathbf{F}_{p}$. Assumes that the string \code{var} is a null-terminated string of length at least one. void fq_zech_ctx_init_fq_nmod_ctx(fq_zech_ctx_t ctx, fq_nmod_ctx_t ctxn); Initializes the context \code{ctx} to be the Zech representation for the finite field given by \code{ctxn}. void fq_zech_ctx_clear(fq_zech_ctx_t ctx) Clears all memory that has been allocated as part of the context. long fq_zech_ctx_degree(const fq_zech_ctx_t ctx) Returns the degree of the field extension $[\mathbf{F}_{q} : \mathbf{F}_{p}]$, which is equal to $\log_{p} q$. fmpz * fq_zech_ctx_prime(const fq_zech_ctx_t ctx) Returns a pointer to the prime $p$ in the context. void fq_zech_ctx_order(fmpz_t f, const fq_zech_ctx_t ctx) Sets $f$ to be the size of the finite field. mp_limb_t fq_zech_ctx_order_ui(const fq_zech_ctx_t ctx) Returns the size of the finite field. int fq_zech_ctx_fprint(FILE * file, const fq_zech_ctx_t ctx) Prints the context information to {\tt{file}}. Returns 1 for a success and a negative number for an error. void fq_zech_ctx_print(const fq_zech_ctx_t ctx) Prints the context information to {\tt{stdout}}. void fq_zech_ctx_randtest(fq_zech_ctx_t ctx) Initializes \code{ctx} to a random finite field. Assumes that \code{fq_zech_ctx_init} as not been called on \code{ctx} already. void fq_zech_ctx_randtest_reducible(fq_zech_ctx_t ctx) Since the Zech logarithm representation does not work with a non-irreducible modulus, does the same as \code{fq_zech_ctx_randtest}. ******************************************************************************* Memory management ******************************************************************************* void fq_zech_init(fq_zech_t rop, const fq_zech_ctx_t ctx) Initialises the element \code{rop}, setting its value to~$0$. void fq_zech_init2(fq_zech_t rop, const fq_zech_ctx_t ctx) Initialises \code{poly} with at least enough space for it to be an element of \code{ctx} and sets it to~$0$. void fq_zech_clear(fq_zech_t rop, const fq_zech_ctx_t ctx) Clears the element \code{rop}. void _fq_zech_sparse_reduce(mp_ptr R, slong lenR, const fq_zech_ctx_t ctx) Reduces \code{(R, lenR)} modulo the polynomial $f$ given by the modulus of \code{ctx}. void _fq_zech_dense_reduce(mp_ptr R, slong lenR, const fq_zech_ctx_t ctx) Reduces \code{(R, lenR)} modulo the polynomial $f$ given by the modulus of \code{ctx} using Newton division. void _fq_zech_reduce(mp_ptr r, slong lenR, const fq_zech_ctx_t ctx) Reduces \code{(R, lenR)} modulo the polynomial $f$ given by the modulus of \code{ctx}. Does either sparse or dense reduction based on \code{ctx->sparse_modulus}. void fq_zech_reduce(fq_zech_t rop, const fq_zech_ctx_t ctx) Reduces the polynomial \code{rop} as an element of $\mathbf{F}_p[X] / (f(X))$. ******************************************************************************* Basic arithmetic ******************************************************************************* void fq_zech_add(fq_zech_t rop, const fq_zech_t op1, const fq_zech_t op2, const fq_zech_ctx_t ctx) Sets \code{rop} to the sum of \code{op1} and \code{op2}. void fq_zech_sub(fq_zech_t rop, const fq_zech_t op1, const fq_zech_t op2, const fq_zech_ctx_t ctx) Sets \code{rop} to the difference of \code{op1} and \code{op2}. void fq_zech_sub_one(fq_zech_t rop, const fq_zech_t op1, const fq_zech_ctx_t ctx) Sets \code{rop} to the difference of \code{op1} and $1$. void fq_zech_neg(fq_zech_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx) Sets \code{rop} to the negative of \code{op}. void fq_zech_mul(fq_zech_t rop, const fq_zech_t op1, const fq_zech_t op2, const fq_zech_ctx_t ctx) Sets \code{rop} to the product of \code{op1} and \code{op2}, reducing the output in the given context. void fq_zech_mul_fmpz(fq_zech_t rop, const fq_zech_t op, const fmpz_t x, const fq_zech_ctx_t ctx) Sets \code{rop} to the product of \code{op} and $x$, reducing the output in the given context. void fq_zech_mul_si(fq_zech_t rop, const fq_zech_t op, slong x, const fq_zech_ctx_t ctx) Sets \code{rop} to the product of \code{op} and $x$, reducing the output in the given context. void fq_zech_mul_ui(fq_zech_t rop, const fq_zech_t op, ulong x, const fq_zech_ctx_t ctx) Sets \code{rop} to the product of \code{op} and $x$, reducing the output in the given context. void fq_zech_sqr(fq_zech_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx) Sets \code{rop} to the square of \code{op}, reducing the output in the given context. void _fq_zech_inv(mp_ptr *rop, mp_srcptr *op, slong len, const fq_zech_ctx_t ctx) Sets \code{(rop, d)} to the inverse of the non-zero element \code{(op, len)}. void fq_zech_inv(fq_zech_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx) Sets \code{rop} to the inverse of the non-zero element \code{op}. void _fq_zech_pow(mp_ptr *rop, mp_srcptr *op, slong len, const fmpz_t e, const fq_zech_ctx_t ctx) Sets \code{(rop, 2*d-1)} to \code{(op,len)} raised to the power~$e$, reduced modulo $f(X)$, the modulus of \code{ctx}. Assumes that $e \geq 0$ and that \code{len} is positive and at most~$d$. Although we require that \code{rop} provides space for $2d - 1$ coefficients, the output will be reduced modulo $f(X)$, which is a polynomial of degree~$d$. Does not support aliasing. void fq_zech_pow(fq_zech_t rop, const fq_zech_t op, const fmpz_t e, const fq_zech_ctx_t ctx) Sets \code{rop} the \code{op} raised to the power~$e$. Currently assumes that $e \geq 0$. Note that for any input \code{op}, \code{rop} is set to~$1$ whenever $e = 0$. void fq_zech_pow_ui(fq_zech_t rop, const fq_zech_t op, const ulong e, const fq_zech_ctx_t ctx) Sets \code{rop} the \code{op} raised to the power~$e$. Currently assumes that $e \geq 0$. Note that for any input \code{op}, \code{rop} is set to~$1$ whenever $e = 0$. ******************************************************************************* Roots ******************************************************************************* void fq_zech_pth_root(fq_zech_t rop, const fq_zech_t op1, const fq_zech_ctx_t ctx) Sets \code{rop} to a $p^{th}$ root root of \code{op1}. Currently, this computes the root by raising \code{op1} to $p^{d-1}$ where $d$ is the degree of the extension. ******************************************************************************* Output ******************************************************************************* int fq_zech_fprint_pretty(FILE *file, const fq_zech_t op, const fq_zech_ctx_t ctx) Prints a pretty representation of \code{op} to \code{file}. In the current implementation, always returns~$1$. The return code is part of the function's signature to allow for a later implementation to return the number of characters printed or a non-positive error code. int fq_zech_print_pretty(const fq_zech_t op, const fq_zech_ctx_t ctx) Prints a pretty representation of \code{op} to \code{stdout}. In the current implementation, always returns~$1$. The return code is part of the function's signature to allow for a later implementation to return the number of characters printed or a non-positive error code. void fq_zech_fprint(FILE * file, const fq_zech_t op, const fq_zech_ctx_t ctx) Prints a representation of \code{op} to \code{file}. void fq_zech_print(const fq_zech_t op, const fq_zech_ctx_t ctx) Prints a representation of \code{op} to \code{stdout}. char * fq_zech_get_str(const fq_zech_t op, const fq_zech_ctx_t ctx) Returns the plain FLINT string representation of the element \code{op}. char * fq_zech_get_str_pretty(const fq_zech_t op, const fq_zech_ctx_t ctx) Returns a pretty representation of the element~\code{op} using the null-terminated string \code{x} as the variable name. ******************************************************************************* Randomisation ******************************************************************************* void fq_zech_randtest(fq_zech_t rop, flint_rand_t state, const fq_zech_ctx_t ctx) Generates a random element of $\mathbb{F}_q$. void fq_zech_randtest_not_zero(fq_zech_t rop, flint_rand_t state, const fq_zech_ctx_t ctx) Generates a random non-zero element of $\mathbb{F}_q$. void fq_zech_randtest_dense(fq_zech_t rop, flint_rand_t state, const fq_zech_ctx_t ctx) Generates a random element of $\mathbb{F}_q$ which has an underlying polynomial with dense coefficients. ******************************************************************************* Assignments and conversions ******************************************************************************* void fq_zech_set(fq_zech_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx) Sets \code{rop} to \code{op}. void fq_zech_set_ui(fq_zech_t rop, const ulong x, const fq_zech_ctx_t ctx) Sets \code{rop} to \code{x}, considered as an element of $\mathbb{F}_p$. void fq_zech_set_fmpz(fq_zech_t rop, const fmpz_t x, const fq_zech_ctx_t ctx) Sets \code{rop} to \code{x}, considered as an element of $\mathbb{F}_p$. void fq_zech_swap(fq_zech_t op1, fq_zech_t op2, const fq_zech_ctx_t ctx) Swaps the two elements \code{op1} and \code{op2}. void fq_zech_zero(fq_zech_t rop, const fq_zech_ctx_t ctx) Sets \code{rop} to zero. void fq_zech_one(fq_zech_t rop, const fq_zech_ctx_t ctx) Sets \code{rop} to one, reduced in the given context. void fq_zech_gen(fq_zech_t rop, const fq_zech_ctx_t ctx) Sets \code{rop} to a multiplicative generator for the finite field. void fq_zech_get_fq_nmod(fq_nmod_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx) Sets \code{rop} to the \code{fq_nmod_t} element corresponding to \code{op}. void fq_zech_set_fq_nmod(fq_zech_t rop, const fq_nmod_t op, const fq_zech_ctx_t ctx) Sets \code{rop} to the \code{fq_zech_t} element corresponding to \code{op}. ******************************************************************************* Comparison ******************************************************************************* int fq_zech_is_zero(const fq_zech_t op, const fq_zech_ctx_t ctx) Returns whether \code{op} is equal to zero. int fq_zech_is_one(const fq_zech_t op, const fq_zech_ctx_t ctx) Returns whether \code{op} is equal to one. int fq_zech_equal(const fq_zech_t op1, const fq_zech_t op2, const fq_zech_ctx_t ctx) Returns whether \code{op1} and \code{op2} are equal. int fq_zech_is_invertible(const fq_zech_t op, const fq_zech_ctx_t ctx) Returns whether \code{op} is an invertible element. int fq_zech_is_invertible_f(fq_zech_t f, const fq_zech_t op, const fq_zech_ctx_t ctx) Returns whether \code{op} is an invertible element. If it is not, then \code{f} is set of a factor of the modulus. Since the modulus for an \code{fq_zech_ctx_t} is always irreducible, then any non-zero \code{op} will be invertible. ******************************************************************************* Special functions ******************************************************************************* void fq_zech_trace(fq_zech_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx) Sets \code{rop} to the trace of \code{op}. For an element $a \in \mathbb{F}_q$, multiplication by $a$ defines a $\mathbb{F}_p$-linear map on $\mathbb{F}_q$. We define the trace of $a$ as the trace of this map. Equivalently, if $\Sigma$ generates $\Gal(\mathbb{F}_q / \mathbb{F}_p)$ then the trace of $a$ is equal to $\sum_{i=0}^{d-1} \Sigma^i (a)$, where $d = \log_{p} q$. void fq_zech_norm(fq_zech_t rop, const fq_zech_t op, const fq_zech_ctx_t ctx) Computes the norm of \code{op}. For an element $a \in \mathbb{F}_q$, multiplication by $a$ defines a $\mathbb{F}_p$-linear map on $\mathbb{F}_q$. We define the norm of $a$ as the determinant of this map. Equivalently, if $\Sigma$ generates $\Gal(\mathbb{F}_q / \mathbb{F}_p)$ then the trace of $a$ is equal to $\prod_{i=0}^{d-1} \Sigma^i (a)$, where $d = \text{dim}_{\mathbb{F}_p}(\mathbb{F}_q)$. Algorithm selection is automatic depending on the input. void fq_zech_frobenius(fq_zech_t rop, const fq_zech_t op, slong e, const fq_zech_ctx_t ctx) Evaluates the homomorphism $\Sigma^e$ at \code{op}. Recall that $\mathbb{F}_q / \mathbb{F}_p$ is Galois with Galois group $\langle \sigma \rangle$, which is also isomorphic to $\mathbf{Z}/d\mathbf{Z}$, where $\sigma \in \Gal(\mathbf{F}_q/\mathbf{F}_p)$ is the Frobenius element $\sigma \colon x \mapsto x^p$. ******************************************************************************* Bit packing ******************************************************************************* void fq_zech_bit_pack(fmpz_t f, const fq_zech_t op, mp_bitcnt_t bit_size, const fq_zech_ctx_t ctx) Packs \code{op} into bitfields of size \code{bit_size}, writing the result to \code{f}. void fq_zech_bit_unpack(fq_zech_t rop, const fmpz_t f, mp_bitcnt_t bit_size, const fq_zech_ctx_t ctx) Unpacks into \code{rop} the element with coefficients packed into fields of size \code{bit_size} as represented by the integer \code{f}.