/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2010 William Hart ******************************************************************************/ ******************************************************************************* Memory management ******************************************************************************* fmpz * _fmpz_vec_init(slong len) Returns an initialised vector of \code{fmpz}'s of given length. void _fmpz_vec_clear(fmpz * vec, slong len) Clears the entries of \code{(vec, len)} and frees the space allocated for \code{vec}. ******************************************************************************* Randomisation ******************************************************************************* void _fmpz_vec_randtest(fmpz * f, flint_rand_t state, slong len, mp_bitcnt_t bits) Sets the entries of a vector of the given length to random integers with up to the given number of bits per entry. void _fmpz_vec_randtest_unsigned(fmpz * f, flint_rand_t state, slong len, mp_bitcnt_t bits) Sets the entries of a vector of the given length to random unsigned integers with up to the given number of bits per entry. ******************************************************************************* Bit sizes and norms ******************************************************************************* slong _fmpz_vec_max_bits(const fmpz * vec, slong len) If $b$ is the maximum number of bits of the absolute value of any coefficient of \code{vec}, then if any coefficient of \code{vec} is negative, $-b$ is returned, else $b$ is returned. slong _fmpz_vec_max_bits_ref(const fmpz * vec, slong len) If $b$ is the maximum number of bits of the absolute value of any coefficient of \code{vec}, then if any coefficient of \code{vec} is negative, $-b$ is returned, else $b$ is returned. This is a slower reference implementation of \code{_fmpz_vec_max_bits}. ulong _fmpz_vec_max_limbs(const fmpz * vec, slong len) Returns the maximum number of limbs needed to store the absolute value of any entry in \code{(vec, len)}. If all entries are zero, returns zero. void _fmpz_vec_height(fmpz_t height, const fmpz * vec, slong len) Computes the height of \code{(vec, len)}, defined as the largest of the absolute values the coefficients. Equivalently, this gives the infinity norm of the vector. If \code{len} is zero, the height is $0$. slong _fmpz_vec_height_index(const fmpz * vec, slong len) Returns the index of an entry of maximum absolute value in the vector. The the length must be at least 1. ******************************************************************************* Input and output ******************************************************************************* int _fmpz_vec_fread(FILE * file, fmpz ** vec, slong * len) Reads a vector from the stream \code{file} and stores it at \code{*vec}. The format is the same as the output format of \code{_fmpz_vec_fprint()}, followed by either any character or the end of the file. The interpretation of the various input arguments depends on whether or not \code{*vec} is \code{NULL}: If \code{*vec == NULL}, the value of \code{*len} on input is ignored. Once the length has been read from \code{file}, \code{*len} is set to that value and a vector of this length is allocated at \code{*vec}. Finally, \code{*len} coefficients are read from the input stream. In case of a file or parsing error, clears the vector and sets \code{*vec} and \code{*len} to \code{NULL} and \code{0}, respectively. Otherwise, if \code{*vec != NULL}, it is assumed that \code{(*vec, *len)} is a properly initialised vector. If the length on the input stream does not match \code{*len}, a parsing error is raised. Attempts to read the right number of coefficients from the input stream. In case of a file or parsing error, leaves the vector \code{(*vec, *len)} in its current state. In case of success, returns a positive value. In case of failure, returns a non-positive value. int _fmpz_vec_read(fmpz ** vec, slong * len) Reads a vector from \code{stdin} and stores it at \code{*vec}. For further details, see \code{_fmpz_vec_fread()}. int _fmpz_vec_fprint(FILE * file, const fmpz * vec, slong len) Prints the vector of given length to the stream \code{file}. The format is the length followed by two spaces, then a space separated list of coefficients. If the length is zero, only $0$ is printed. In case of success, returns a positive value. In case of failure, returns a non-positive value. int _fmpz_vec_print(const fmpz * vec, slong len) Prints the vector of given length to \code{stdout}. For further details, see \code{_fmpz_vec_fprint()}. ******************************************************************************* Conversions ******************************************************************************* void _fmpz_vec_get_nmod_vec(mp_ptr res, const fmpz * poly, slong len, nmod_t mod) Reduce the coefficients of \code{(poly, len)} modulo the given modulus and set \code{(res, len)} to the result. void _fmpz_vec_set_nmod_vec(fmpz * res, mp_srcptr poly, slong len, nmod_t mod) Set the coefficients of \code{(res, len)} to the symmetric modulus of the coefficients of \code{(poly, len)}, i.e. convert the given coefficients modulo the given modulus $n$ to their signed integer representatives in the range $[-n/2, n/2)$. slong _fmpz_vec_get_fft(mp_limb_t ** coeffs_f, const fmpz * coeffs_m, slong l, slong length) Convert the vector of coeffs \code{coeffs_m} to an fft vector \code{coeffs_f} of the given \code{length} with \code{l} limbs per coefficient with an additional limb for overflow. void _fmpz_vec_set_fft(fmpz * coeffs_m, slong length, const mp_ptr * coeffs_f, slong limbs, slong sign) Convert an fft vector \code{coeffs_f} of the given \code{length} to a vector of \code{fmpz}'s. Each is assumed to be the given number of limbs in length with an additional limb for overflow. If the output coefficients are to be signed then set \code{sign}, otherwise clear it. ******************************************************************************* Assignment and basic manipulation ******************************************************************************* void _fmpz_vec_set(fmpz * vec1, const fmpz * vec2, slong len2) Makes a copy of \code{(vec2, len2)} into \code{vec1}. void _fmpz_vec_swap(fmpz * vec1, fmpz * vec2, slong len2) Swaps the integers in \code{(vec1, len2)} and \code{(vec2, len2)}. void _fmpz_vec_zero(fmpz * vec, slong len) Zeros the entries of \code{(vec, len)}. void _fmpz_vec_neg(fmpz * vec1, const fmpz * vec2, slong len2) Negates \code{(vec2, len2)} and places it into \code{vec1}. ******************************************************************************* Comparison ******************************************************************************* int _fmpz_vec_equal(const fmpz * vec1, const fmpz * vec2, slong len) Compares two vectors of the given length and returns $1$ if they are equal, otherwise returns $0$. int _fmpz_vec_is_zero(const fmpz * vec, slong len) Returns $1$ if \code{(vec, len)} is zero, and $0$ otherwise. ******************************************************************************* Sorting ******************************************************************************* void _fmpz_vec_sort(fmpz * vec, slong len) Sorts the coefficients of \code{vec} in ascending order. ******************************************************************************* Addition and subtraction ******************************************************************************* void _fmpz_vec_add(fmpz * res, const fmpz * vec1, const fmpz * vec2, slong len2) Sets \code{(res, len2)} to the sum of \code{(vec1, len2)} and \code{(vec2, len2)}. void _fmpz_vec_sub(fmpz * res, const fmpz * vec1, const fmpz * vec2, slong len2) Sets \code{(res, len2)} to \code{(vec1, len2)} minus \code{(vec2, len2)}. ******************************************************************************* Scalar multiplication and division ******************************************************************************* void _fmpz_vec_scalar_mul_fmpz(fmpz * vec1, const fmpz * vec2, slong len2, const fmpz_t x) Sets \code{(vec1, len2)} to \code{(vec2, len2)} multiplied by $c$, where $c$ is an \code{fmpz_t}. id _fmpz_vec_scalar_mul_si(fmpz * vec1, const fmpz * vec2, slong len2, slong c) Sets \code{(vec1, len2)} to \code{(vec2, len2)} multiplied by $c$, where $c$ is a \code{slong}. void _fmpz_vec_scalar_mul_ui(fmpz * vec1, const fmpz * vec2, slong len2, ulong c) Sets \code{(vec1, len2)} to \code{(vec2, len2)} multiplied by $c$, where $c$ is an \code{ulong}. void _fmpz_vec_scalar_mul_2exp(fmpz * vec1, const fmpz * vec2, slong len2, ulong exp) Sets \code{(vec1, len2)} to \code{(vec2, len2)} multiplied by \code{2^exp}. void _fmpz_vec_scalar_divexact_fmpz(fmpz * vec1, const fmpz * vec2, slong len2, const fmpz_t x) Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $x$, where the division is assumed to be exact for every entry in \code{vec2}. void _fmpz_vec_scalar_divexact_si(fmpz * vec1, const fmpz * vec2, slong len2, slong c) Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $x$, where the division is assumed to be exact for every entry in \code{vec2}. void _fmpz_vec_scalar_divexact_ui(fmpz * vec1, const fmpz * vec2, ulong len2, ulong c) Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $x$, where the division is assumed to be exact for every entry in \code{vec2}. void _fmpz_vec_scalar_fdiv_q_fmpz(fmpz * vec1, const fmpz * vec2, slong len2, const fmpz_t c) Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding down towards minus infinity whenever the division is not exact. void _fmpz_vec_scalar_fdiv_q_si(fmpz * vec1, const fmpz * vec2, slong len2, slong c) Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding down towards minus infinity whenever the division is not exact. void _fmpz_vec_scalar_fdiv_q_ui(fmpz * vec1, const fmpz * vec2, slong len2, ulong c) Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding down towards minus infinity whenever the division is not exact. void _fmpz_vec_scalar_fdiv_q_2exp(fmpz * vec1, const fmpz * vec2, slong len2, ulong exp) Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by \code{2^exp}, rounding down towards minus infinity whenever the division is not exact. void _fmpz_vec_scalar_fdiv_r_2exp(fmpz * vec1, const fmpz * vec2, slong len2, ulong exp) Sets \code{(vec1, len2)} to the remainder of \code{(vec2, len2)} divided by \code{2^exp}, rounding down the quotient towards minus infinity whenever the division is not exact. void _fmpz_vec_scalar_tdiv_q_fmpz(fmpz * vec1, const fmpz * vec2, slong len2, const fmpz_t c) Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding towards zero whenever the division is not exact. void _fmpz_vec_scalar_tdiv_q_si(fmpz * vec1, const fmpz * vec2, slong len2, slong c) Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding towards zero whenever the division is not exact. void _fmpz_vec_scalar_tdiv_q_ui(fmpz * vec1, const fmpz * vec2, slong len2, ulong c) Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by $c$, rounding towards zero whenever the division is not exact. void _fmpz_vec_scalar_tdiv_q_2exp(fmpz * vec1, const fmpz * vec2, slong len2, ulong exp) Sets \code{(vec1, len2)} to \code{(vec2, len2)} divided by \code{2^exp}, rounding down towards zero whenever the division is not exact. void _fmpz_vec_scalar_addmul_fmpz(fmpz * vec1, const fmpz * vec2, slong len2, const fmpz_t c) Adds \code{(vec2, len2)} times $c$ to \code{(vec1, len2)}, where $c$ is a \code{fmpz_t}. void _fmpz_vec_scalar_addmul_si(fmpz * vec1, const fmpz * vec2, slong len2, slong c) Adds \code{(vec2, len2)} times $c$ to \code{(vec1, len2)}, where $c$ is a \code{slong}. void _fmpz_vec_scalar_addmul_si_2exp(fmpz * vec1, const fmpz * vec2, slong len2, slong c, ulong exp) Adds \code{(vec2, len2)} times \code{c * 2^exp} to \code{(vec1, len2)}, where $c$ is a \code{slong}. void _fmpz_vec_scalar_submul_fmpz(fmpz * vec1, const fmpz * vec2, slong len2, const fmpz_t x) Subtracts \code{(vec2, len2)} times $c$ from \code{(vec1, len2)}, where $c$ is a \code{fmpz_t}. void _fmpz_vec_scalar_submul_si(fmpz * vec1, const fmpz * vec2, slong len2, slong c) Subtracts \code{(vec2, len2)} times $c$ from \code{(vec1, len2)}, where $c$ is a \code{slong}. void _fmpz_vec_scalar_submul_si_2exp(fmpz * vec1, const fmpz * vec2, slong len2, slong c, ulong e) Subtracts \code{(vec2, len2)} times $c \times 2^e$ from \code{(vec1, len2)}, where $c$ is a \code{slong}. ******************************************************************************* Sums and products ******************************************************************************* void _fmpz_vec_sum(fmpz_t res, const fmpz * vec, slong len) Sets \code{res} to the sum of the entries in \code{(vec, len)}. Aliasing of \code{res} with the entries in \code{vec} is not permitted. void _fmpz_vec_prod(fmpz_t res, const fmpz * vec, slong len) Sets \code{res} to the product of the entries in \code{(vec, len)}. Aliasing of \code{res} with the entries in \code{vec} is not permitted. Uses binary splitting. ******************************************************************************* Reduction mod $p$ ******************************************************************************* void _fmpz_vec_scalar_mod_fmpz(fmpz *res, const fmpz *vec, slong len, const fmpz_t p) Reduces all entries in \code{(vec, len)} modulo $p > 0$. void _fmpz_vec_scalar_smod_fmpz(fmpz *res, const fmpz *vec, slong len, const fmpz_t p) Reduces all entries in \code{(vec, len)} modulo $p > 0$, choosing the unique representative in $(-p/2, p/2]$. ******************************************************************************* Gaussian content ******************************************************************************* void _fmpz_vec_content(fmpz_t res, const fmpz * vec, slong len) Sets \code{res} to the non-negative content of the entries in \code{vec}. The content of a zero vector, including the case when the length is zero, is defined to be zero. void _fmpz_vec_lcm(fmpz_t res, const fmpz * vec, slong len) Sets \code{res} to the nonnegative least common multiple of the entries in \code{vec}. The least common multiple is zero if any entry in the vector is zero. The least common multiple of a length zero vector is defined to be one.