/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2011 Fredrik Johansson Copyright (C) 2012 Lina Kulakova Copyright (C) 2013 Martin Lee ******************************************************************************/ #include #include "flint.h" #include "fmpz_vec.h" #include "fmpz_mod_poly.h" #include "fmpz_mat.h" #include "ulong_extras.h" void _fmpz_mod_poly_reduce_matrix_mod_poly (fmpz_mat_t A, const fmpz_mat_t B, const fmpz_mod_poly_t f) { fmpz * tmp1, *tmp2; slong n = f->length - 1; slong i, m = n_sqrt(n) + 1; fmpz_t invf; fmpz_init(invf); fmpz_invmod(invf, f->coeffs + n, &f->p); fmpz_mat_init(A, m, n); fmpz_one(A->rows[0]); tmp1 = _fmpz_vec_init(2 * (B->c) - n); tmp2 = tmp1 + (B->c - n); for (i= 1; i < m; i++) { _fmpz_mod_poly_divrem(tmp1, tmp2, B->rows[i], B->c, f->coeffs, f->length, invf, &f->p); _fmpz_vec_set(A->rows[i], tmp2, n); } _fmpz_vec_clear(tmp1, 2 * (B->c) - n); fmpz_clear(invf); } void _fmpz_mod_poly_precompute_matrix (fmpz_mat_t A, const fmpz * poly1, const fmpz * poly2, slong len2, const fmpz * poly2inv, slong len2inv, const fmpz_t p) { /* Set rows of A to powers of poly1 */ slong i, n, m; n = len2 - 1; m = n_sqrt(n) + 1; fmpz_one(A->rows[0]); _fmpz_vec_set(A->rows[1], poly1, n); for (i = 2; i < m; i++) _fmpz_mod_poly_mulmod_preinv(A->rows[i], A->rows[i - 1], n, poly1, n, poly2, len2, poly2inv, len2inv, p); } void fmpz_mod_poly_precompute_matrix(fmpz_mat_t A, const fmpz_mod_poly_t poly1, const fmpz_mod_poly_t poly2, const fmpz_mod_poly_t poly2inv) { slong len1 = poly1->length; slong len2 = poly2->length; slong len = len2 - 1; slong vec_len = FLINT_MAX(len2 - 1, len1); slong m= n_sqrt(len) + 1; fmpz* ptr; fmpz_t inv2; if (len2 == 0) { flint_printf("Exception (fmpz_mod_poly_precompute_matrix)." "Division by zero.\n"); abort(); } if (A->r != m || A->c != len) { flint_printf("Exception (fmpz_mod_poly_precompute_matrix)." " Wrong dimensions.\n"); abort(); } if (len2 == 1) { fmpz_mat_zero(A); return; } ptr = _fmpz_vec_init(vec_len); if (len1 <= len) { _fmpz_vec_set(ptr, poly1->coeffs, len1); _fmpz_vec_zero(ptr + len1, vec_len - len1); } else { fmpz_init(inv2); fmpz_invmod(inv2, poly2->coeffs + len, &poly1->p); _fmpz_mod_poly_rem(ptr, poly1->coeffs, len1, poly2->coeffs, len2, inv2, &poly1->p); fmpz_clear(inv2); } _fmpz_mod_poly_precompute_matrix (A, ptr, poly2->coeffs, len2, poly2inv->coeffs, poly2inv->length, &poly1->p); _fmpz_vec_clear(ptr, vec_len); } void _fmpz_mod_poly_compose_mod_brent_kung_precomp_preinv(fmpz * res, const fmpz * poly1, slong len1, const fmpz_mat_t A, const fmpz * poly3, slong len3, const fmpz * poly3inv, slong len3inv, const fmpz_t p) { fmpz_mat_t B, C; fmpz * t, * h; slong i, j, n, m; n = len3 - 1; if (len3 == 1) return; if (len1 == 1) { fmpz_set(res, poly1); return; } if (len3 == 2) { _fmpz_mod_poly_evaluate_fmpz(res, poly1, len1, A->rows[1], p); return; } m = n_sqrt(n) + 1; fmpz_mat_init(B, m, m); fmpz_mat_init(C, m, n); h = _fmpz_vec_init(n); t = _fmpz_vec_init(n); /* Set rows of B to the segments of poly1 */ for (i = 0; i < len1 / m; i++) _fmpz_vec_set(B->rows[i], poly1 + i * m, m); _fmpz_vec_set(B->rows[i], poly1 + i * m, len1 % m); fmpz_mat_mul(C, B, A); for (i = 0; i < m; i++) for (j = 0; j < n; j++) fmpz_mod(C->rows[i] + j, C->rows[i] + j, p); /* Evaluate block composition using the Horner scheme */ _fmpz_vec_set(res, C->rows[m - 1], n); _fmpz_mod_poly_mulmod_preinv(h, A->rows[m - 1], n, A->rows[1], n, poly3, len3, poly3inv, len3inv, p); for (i = m - 2; i >= 0; i--) { _fmpz_mod_poly_mulmod_preinv(t, res, n, h, n, poly3, len3, poly3inv, len3inv, p); _fmpz_mod_poly_add(res, t, n, C->rows[i], n, p); } _fmpz_vec_clear(h, n); _fmpz_vec_clear(t, n); fmpz_mat_clear(B); fmpz_mat_clear(C); } void fmpz_mod_poly_compose_mod_brent_kung_precomp_preinv(fmpz_mod_poly_t res, const fmpz_mod_poly_t poly1, const fmpz_mat_t A, const fmpz_mod_poly_t poly3, const fmpz_mod_poly_t poly3inv) { slong len1 = poly1->length; slong len3 = poly3->length; slong len = len3 - 1; if (len3 == 0) { flint_printf("Exception (fmpz_mod_poly_compose_mod_brent_kung_precomp_preinv)." "Division by zero\n"); abort(); } if (len1 >= len3) { flint_printf("Exception (fmpz_mod_poly_compose_mod_brent_kung_precomp_preinv)." "The degree of the first polynomial must be smaller than that of the " " modulus\n"); abort(); } if (len1 == 0 || len3 == 1) { fmpz_mod_poly_zero(res); return; } if (len1 == 1) { fmpz_mod_poly_set(res, poly1); return; } if (res == poly3 || res == poly1 || res == poly3inv) { fmpz_mod_poly_t tmp; fmpz_mod_poly_init(tmp, &res->p); fmpz_mod_poly_compose_mod_brent_kung_precomp_preinv(tmp, poly1, A, poly3, poly3inv); fmpz_mod_poly_swap(tmp, res); fmpz_mod_poly_clear(tmp); return; } fmpz_mod_poly_fit_length(res, len); _fmpz_mod_poly_compose_mod_brent_kung_precomp_preinv(res->coeffs, poly1->coeffs, len1, A, poly3->coeffs, len3, poly3inv->coeffs, poly3inv->length, &res->p); _fmpz_mod_poly_set_length(res, len); _fmpz_mod_poly_normalise(res); }