/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2011, 2012 Sebastian Pancratz ******************************************************************************/ ******************************************************************************* Module documentation We represent a polynomial in $\mathbf{Q}_p[x]$ as a product $p^v f(x)$, where $p$ is a prime number, $v \in \mathbf{Z}$ and $f(x) \in \mathbf{Z}[x]$. As a data structure, we call this polynomial \emph{normalised} if the polynomial $f(x)$ is \emph{normalised}, that is, if the top coefficient is non-zero. We say this polynomial is in \emph{canonical form} if one of the coefficients of $f(x)$ is a $p$-adic unit. If $f(x)$ is the zero polynomial, we require that $v = 0$. We say this polynomial is \emph{reduced} modulo $p^N$ if it is canonical form and if all coefficients lie in the range $[0, p^N)$. ******************************************************************************* ******************************************************************************* Memory management ******************************************************************************* void padic_poly_init(padic_poly_t poly) Initialises \code{poly} for use, setting its length to zero. The precision of the polynomial is set to \code{PADIC_DEFAULT_PREC}. A corresponding call to \code{padic_poly_clear()} must be made after finishing with the \code{padic_poly_t} to free the memory used by the polynomial. void padic_poly_init2(padic_poly_t poly, slong alloc, slong prec) Initialises \code{poly} with space for at least \code{alloc} coefficients and sets the length to zero. The allocated coefficients are all set to zero. The precision is set to \code{prec}. void padic_poly_realloc(padic_poly_t poly, slong alloc, const fmpz_t p) Reallocates the given polynomial to have space for \code{alloc} coefficients. If \code{alloc} is zero the polynomial is cleared and then reinitialised. If the current length is greater than \code{alloc} the polynomial is first truncated to length \code{alloc}. void padic_poly_fit_length(padic_poly_t poly, slong len) If \code{len} is greater than the number of coefficients currently allocated, then the polynomial is reallocated to have space for at least \code{len} coefficients. No data is lost when calling this function. The function efficiently deals with the case where \code{fit_length} is called many times in small increments by at least doubling the number of allocated coefficients when length is larger than the number of coefficients currently allocated. void _padic_poly_set_length(padic_poly_t poly, slong len) Demotes the coefficients of \code{poly} beyond \code{len} and sets the length of \code{poly} to \code{len}. Note that if the current length is greater than \code{len} the polynomial may no slonger be in canonical form. void padic_poly_clear(padic_poly_t poly) Clears the given polynomial, releasing any memory used. It must be reinitialised in order to be used again. void _padic_poly_normalise(padic_poly_t poly) Sets the length of \code{poly} so that the top coefficient is non-zero. If all coefficients are zero, the length is set to zero. This function is mainly used internally, as all functions guarantee normalisation. void _padic_poly_canonicalise(fmpz *poly, slong *v, slong len, const fmpz_t p) void padic_poly_canonicalise(padic_poly_t poly, const fmpz_t p) Brings the polynomial \code{poly} into canonical form, assuming that it is normalised already. Does \emph{not} carry out any reduction. void padic_poly_reduce(padic_poly_t poly, const padic_ctx_t ctx) Reduces the polynomial \code{poly} modulo $p^N$, assuming that it is in canonical form already. void padic_poly_truncate(padic_poly_t poly, slong n, const fmpz_t p) Truncates the polynomial to length at most~$n$. ******************************************************************************* Polynomial parameters ******************************************************************************* slong padic_poly_degree(padic_poly_t poly) Returns the degree of the polynomial \code{poly}. slong padic_poly_length(padic_poly_t poly) Returns the length of the polynomial \code{poly}. slong padic_poly_val(padic_poly_t poly) Returns the valuation of the polynomial \code{poly}, which is defined to be the minimum valuation of all its coefficients. The valuation of the zero polynomial is~$0$. Note that this is implemented as a macro and can be used as either a \code{lvalue} or a \code{rvalue}. slong padic_poly_prec(padic_poly_t poly) Returns the precision of the polynomial \code{poly}. Note that this is implemented as a macro and can be used as either a \code{lvalue} or a \code{rvalue}. Note that increasing the precision might require a call to \code{padic_poly_reduce()}. ******************************************************************************* Randomisation ******************************************************************************* void padic_poly_randtest(padic_poly_t f, flint_rand_t state, slong len, const padic_ctx_t ctx) Sets $f$ to a random polynomial of length at most \code{len} with entries reduced modulo $p^N$. void padic_poly_randtest_not_zero(padic_poly_t f, flint_rand_t state, slong len, const padic_ctx_t ctx) Sets $f$ to a non-zero random polynomial of length at most \code{len} with entries reduced modulo $p^N$. void padic_poly_randtest_val(padic_poly_t f, flint_rand_t state, slong val, slong len, const padic_ctx_t ctx) Sets $f$ to a random polynomial of length at most \code{len} with at most the prescribed valuation \code{val} and entries reduced modulo $p^N$. Specifically, we aim to set the valuation to be exactly equal to \code{val}, but do not check for additional cancellation when creating the coefficients. ******************************************************************************* Assignment and basic manipulation ******************************************************************************* void padic_poly_set_padic(padic_poly_t poly, const padic_t x, const padic_ctx_t ctx) Sets the polynomial \code{poly} to the $p$-adic number $x$, reduced to the precision of the polynomial. void padic_poly_set(padic_poly_t poly1, const padic_poly_t poly2, const padic_ctx_t ctx) Sets the polynomial \code{poly1} to the polynomial \code{poly2}, reduced to the precision of \code{poly1}. void padic_poly_set_si(padic_poly_t poly, slong x, const padic_ctx_t ctx) Sets the polynomial \code{poly} to the \code{signed slong} integer $x$ reduced to the precision of the polynomial. void padic_poly_set_ui(padic_poly_t poly, ulong x, const padic_ctx_t ctx) Sets the polynomial \code{poly} to the \code{unsigned slong} integer $x$ reduced to the precision of the polynomial. void padic_poly_set_fmpz(padic_poly_t poly, const fmpz_t x, const padic_ctx_t ctx) Sets the polynomial \code{poly} to the integer $x$ reduced to the precision of the polynomial. void padic_poly_set_fmpq(padic_poly_t poly, const fmpq_t x, const padic_ctx_t ctx) Sets the polynomial \code{poly} to the value of the rational $x$, reduced to the precision of the polynomial. void padic_poly_set_fmpz_poly(padic_poly_t rop, const fmpz_poly_t op, const padic_ctx_t ctx) Sets the polynomial \code{rop} to the integer polynomial \code{op} reduced to the precision of the polynomial. void padic_poly_set_fmpq_poly(padic_poly_t rop, const fmpq_poly_t op, const padic_ctx_t ctx) Sets the polynomial \code{rop} to the value of the rational polynomial \code{op}, reduced to the precision of the polynomial. int padic_poly_get_fmpz_poly(fmpz_poly_t rop, const padic_poly_t op, const padic_ctx_t ctx) Sets the integer polynomial \code{rop} to the value of the $p$-adic polynomial \code{op} and returns $1$ if the polynomial is $p$-adically integral. Otherwise, returns $0$. void padic_poly_get_fmpq_poly(fmpq_poly_t rop, const padic_poly_t op, const padic_ctx_t ctx) Sets \code{rop} to the rational polynomial corresponding to the $p$-adic polynomial \code{op}. void padic_poly_zero(padic_poly_t poly) Sets \code{poly} to the zero polynomial. void padic_poly_one(padic_poly_t poly) Sets \code{poly} to the constant polynomial $1$, reduced to the precision of the polynomial. void padic_poly_swap(padic_poly_t poly1, padic_poly_t poly2) Swaps the two polynomials \code{poly1} and \code{poly2}, including their precisions. This is done efficiently by swapping pointers. ******************************************************************************* Getting and setting coefficients ******************************************************************************* void padic_poly_get_coeff_padic(padic_t c, const padic_poly_t poly, slong n, const padic_ctx_t ctx) Sets $c$ to the coefficient of $x^n$ in the polynomial, reduced modulo the precision of $c$. void padic_poly_set_coeff_padic(padic_poly_t f, slong n, const padic_t c, const padic_ctx_t ctx) Sets the coefficient of $x^n$ in the polynomial $f$ to $c$, reduced to the precision of the polynomial $f$. Note that this operation can take linear time in the length of the polynomial. ******************************************************************************* Comparison ******************************************************************************* int padic_poly_equal(const padic_poly_t poly1, const padic_poly_t poly2) Returns whether the two polynomials \code{poly1} and \code{poly2} are equal. int padic_poly_is_zero(const padic_poly_t poly) Returns whether the polynomial \code{poly} is the zero polynomial. int padic_poly_is_one(const padic_poly_t poly, const padic_ctx_t ctx) Returns whether the polynomial \code{poly} is equal to the constant polynomial~$1$, taking the precision of the polynomial into account. ******************************************************************************* Addition and subtraction ******************************************************************************* void _padic_poly_add(fmpz *rop, slong *rval, slong N, const fmpz *op1, slong val1, slong len1, slong N1, const fmpz *op2, slong val2, slong len2, slong N2, const padic_ctx_t ctx) Sets \code{(rop, *val, FLINT_MAX(len1, len2)} to the sum of \code{(op1, val1, len1)} and \code{(op2, val2, len2)}. Assumes that the input is reduced and guarantees that this is also the case for the output. Assumes that $\min\{v_1, v_2\} < N$. Supports aliasing between the output and input arguments. void padic_poly_add(padic_poly_t f, const padic_poly_t g, const padic_poly_t h, const padic_ctx_t ctx); Sets $f$ to the sum $g + h$. void _padic_poly_sub(fmpz *rop, slong *rval, const fmpz *op1, slong val1, slong len1, const fmpz *op2, slong val2, slong len2, const padic_ctx_t ctx); Sets \code{(rop, *val, FLINT_MAX(len1, len2)} to the difference of \code{(op1, val1, len1)} and \code{(op2, val2, len2)}. Assumes that the input is reduced and guarantees that this is also the case for the output. Assumes that $\min\{v_1, v_2\} < N$. Support aliasing between the output and input arguments. void padic_poly_sub(padic_poly_t f, const padic_poly_t g, const padic_poly_t h, const padic_ctx_t ctx); Sets $f$ to the difference $g - h$. void padic_poly_neg(padic_poly_t f, const padic_poly_t g, const padic_ctx_t ctx); Sets $f$ to $-g$. ******************************************************************************* Scalar multiplication ******************************************************************************* void _padic_poly_scalar_mul_padic(fmpz *rop, slong *rval, const fmpz *op, slong val, slong len, const padic_t c, const padic_ctx_t ctx) Sets \code{(rop, *rval, len)} to \code{(op, val, len)} multiplied by the scalar $c$. The result will only be correctly reduced if the polynomial is non-zero. Otherwise, the array \code{(rop, len)} will be set to zero but the valuation \code{*rval} might be wrong. void padic_poly_scalar_mul_padic(padic_poly_t rop, const padic_poly_t op, const padic_t c, const padic_ctx_t ctx) Sets the polynomial \code{rop} to the product of the polynomial \code{op} and the $p$-adic number $c$, reducing the result modulo $p^N$. ******************************************************************************* Multiplication ******************************************************************************* void _padic_poly_mul(fmpz *rop, slong *rval, slong N, const fmpz *op1, slong val1, slong len1, const fmpz *op2, slong val2, slong len2, const padic_ctx_t ctx) Sets \code{(rop, *rval, len1 + len2 - 1)} to the product of \code{(op1, val1, len1)} and \code{(op2, val2, len2)}. Assumes that the resulting valuation \code{*rval}, which is the sum of the valuations \code{val1} and \code{val2}, is less than the precision~$N$ of the context. Assumes that \code{len1 >= len2 > 0}. void padic_poly_mul(padic_poly_t res, const padic_poly_t poly1, const padic_poly_t poly2, const padic_ctx_t ctx) Sets the polynomial \code{res} to the product of the two polynomials \code{poly1} and \code{poly2}, reduced modulo $p^N$. ******************************************************************************* Powering ******************************************************************************* void _padic_poly_pow(fmpz *rop, slong *rval, slong N, const fmpz *op, slong val, slong len, ulong e, const padic_ctx_t ctx) Sets the polynomial \code{(rop, *rval, e (len - 1) + 1)} to the polynomial \code{(op, val, len)} raised to the power~$e$. Assumes that $e > 1$ and \code{len > 0}. Does not support aliasing between the input and output arguments. void padic_poly_pow(padic_poly_t rop, const padic_poly_t op, ulong e, const padic_ctx_t ctx) Sets the polynomial \code{rop} to the polynomial \code{op} raised to the power~$e$, reduced to the precision in \code{rop}. In the special case $e = 0$, sets \code{rop} to the constant polynomial one reduced to the precision of \code{rop}. Also note that when $e = 1$, this operation sets \code{rop} to \code{op} and then reduces \code{rop}. When the valuation of the input polynomial is negative, this results in a loss of $p$-adic precision. Suppose that the input polynomial is given to precision~$N$ and has valuation~$v < 0$. The result then has valuation $e v < 0$ but is only correct to precision $N + (e - 1) v$. ******************************************************************************* Series inversion ******************************************************************************* void padic_poly_inv_series(padic_poly_t g, const padic_poly_t f, slong n, const padic_ctx_t ctx) Computes the power series inverse $g$ of $f$ modulo $X^n$, where $n \geq 1$. Given the polynomial $f \in \mathbf{Q}[X] \subset \mathbf{Q}_p[X]$, there exists a unique polynomial $f^{-1} \in \mathbf{Q}[X]$ such that $f f^{-1} = 1$ modulo $X^n$. This function sets $g$ to $f^{-1}$ reduced modulo $p^N$. Assumes that the constant coefficient of $f$ is non-zero. Moreover, assumes that the valuation of the constant coefficient of $f$ is minimal among the coefficients of $f$. Note that the result $g$ is zero if and only if $- \ord_p(f) \geq N$. ******************************************************************************* Derivative ******************************************************************************* void _padic_poly_derivative(fmpz *rop, slong *rval, slong N, const fmpz *op, slong val, slong len, const padic_ctx_t ctx) Sets \code{(rop, rval)} to the derivative of \code{(op, val)} reduced modulo $p^N$. Supports aliasing of the input and the output parameters. void padic_poly_derivative(padic_poly_t rop, const padic_poly_t op, const padic_ctx_t ctx) Sets \code{rop} to the derivative of \code{op}, reducing the result modulo the precision of \code{rop}. ******************************************************************************* Shifting ******************************************************************************* void padic_poly_shift_left(padic_poly_t rop, const padic_poly_t op, slong n, const padic_ctx_t ctx) Notationally, sets the polynomial \code{rop} to the polynomial \code{op} multiplied by $x^n$, where $n \geq 0$, and reduces the result. void padic_poly_shift_right(padic_poly_t rop, const padic_poly_t op, slong n) Notationally, sets the polynomial \code{rop} to the polynomial \code{op} after floor division by $x^n$, where $n \geq 0$, ensuring the result is reduced. ******************************************************************************* Evaluation ******************************************************************************* void _padic_poly_evaluate_padic(fmpz_t u, slong *v, slong N, const fmpz *poly, slong val, slong len, const fmpz_t a, slong b, const padic_ctx_t ctx) void padic_poly_evaluate_padic(padic_t y, const padic_poly_t poly, const padic_t a, const padic_ctx_t ctx) Sets the $p$-adic number \code{y} to \code{poly} evaluated at $a$, reduced in the given context. Suppose that the polynomial can be written as $F(X) = p^w f(X)$ with $\ord_p(f) = 1$, that $\ord_p(a) = b$ and that both are defined to precision~$N$. Then $f$ is defined to precision $N-w$ and so $f(a)$ is defined to precision $N-w$ when $a$ is integral and $N-w+(n-1)b$ when $b < 0$, where $n = \deg(f)$. Thus, $y = F(a)$ is defined to precision $N$ when $a$ is integral and $N+(n-1)b$ when $b < 0$. ******************************************************************************* Composition ******************************************************************************* void _padic_poly_compose(fmpz *rop, slong *rval, slong N, const fmpz *op1, slong val1, slong len1, const fmpz *op2, slong val2, slong len2, const padic_ctx_t ctx) Sets \code{(rop, *rval, (len1-1)*(len2-1)+1)} to the composition of the two input polynomials, reducing the result modulo $p^N$. Assumes that \code{len1} is non-zero. Does not support aliasing. void padic_poly_compose(padic_poly_t rop, const padic_poly_t op1, const padic_poly_t op2, const padic_ctx_t ctx) Sets \code{rop} to the composition of \code{op1} and \code{op2}, reducing the result in the given context. To be clear about the order of composition, let $f(X)$ and $g(X)$ denote the polynomials \code{op1} and \code{op2}, respectively. Then \code{rop} is set to $f(g(X))$. void _padic_poly_compose_pow(fmpz *rop, slong *rval, slong N, const fmpz *op, slong val, slong len, slong k, const padic_ctx_t ctx) Sets \code{(rop, *rval, (len - 1)*k + 1)} to the composition of \code{(op, val, len)} and the monomial $x^k$, where $k \geq 1$. Assumes that \code{len} is positive. Supports aliasing between the input and output polynomials. void padic_poly_compose_pow(padic_poly_t rop, const padic_poly_t op, slong k, const padic_ctx_t ctx) Sets \code{rop} to the composition of \code{op} and the monomial $x^k$, where $k \geq 1$. Note that no reduction takes place. ******************************************************************************* Input and output ******************************************************************************* int padic_poly_debug(const padic_poly_t poly) Prints the data defining the $p$-adic polynomial \code{poly} in a simple format useful for debugging purposes. In the current implementation, always returns $1$. int _padic_poly_fprint(FILE *file, const fmpz *poly, slong val, slong len, const padic_ctx_t ctx) int padic_poly_fprint(FILE *file, const padic_poly_t poly, const padic_ctx_t ctx) Prints a simple representation of the polynomial \code{poly} to the stream \code{file}. A non-zero polynomial is represented by the number of coeffients, two spaces, followed by a list of the coefficients, which are printed in a way depending on the print mode, \begin{itemize} \item In the \code{PADIC_TERSE} mode, the coefficients are printed as rational numbers. \item The \code{PADIC_SERIES} mode is currently not supported and will raise an abort signal. \item In the \code{PADIC_VAL_UNIT} mode, the coefficients are printed in the form $p^v u$. \end{itemize} The zero polynomial is represented by \code{"0"}. In the current implementation, always returns $1$. int _padic_poly_print(const fmpz *poly, slong val, slong len, const padic_ctx_t ctx) int padic_poly_print(const padic_poly_t poly, const padic_ctx_t ctx) Prints a simple representation of the polynomial \code{poly} to \code{stdout}. In the current implementation, always returns $1$. int _padic_poly_fprint_pretty(FILE *file, const fmpz *poly, slong val, slong len, const char *var, const padic_ctx_t ctx) int padic_poly_fprint_pretty(FILE *file, const padic_poly_t poly, const char *var, const padic_ctx_t ctx) int _padic_poly_print_pretty(FILE *file, const fmpz *poly, slong val, slong len, const char *var, const padic_ctx_t ctx) int padic_poly_print_pretty(const padic_poly_t poly, const char *var, const padic_ctx_t ctx) ******************************************************************************* Testing ******************************************************************************* int _padic_poly_is_canonical(const fmpz *op, slong val, slong len, const padic_ctx_t ctx); int padic_poly_is_canonical(const padic_poly_t op, const padic_ctx_t ctx); int _padic_poly_is_reduced(const fmpz *op, slong val, slong len, slong N, const padic_ctx_t ctx); int padic_poly_is_reduced(const padic_poly_t op, const padic_ctx_t ctx);