/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2010 William Hart ******************************************************************************/ ******************************************************************************* Memory management ******************************************************************************* mp_ptr _nmod_vec_init(slong len) Returns a vector of the given length. The entries are not necessarily zero. void _nmod_vec_clear(mp_ptr vec) Frees the memory used by the given vector. ******************************************************************************* Modular reduction and arithmetic ******************************************************************************* void nmod_init(nmod_t * mod, mp_limb_t n) Initialises the given \code{nmod_t} structure for reduction modulo $n$ with a precomputed inverse. NMOD_RED2(r, a_hi, a_lo, mod) Macro to set $r$ to $a$ reduced modulo \code{mod.n}, where $a$ consists of two limbs \code{(a_hi, a_lo)}. The \code{mod} parameter must be a valid \code{nmod_t} structure. It is assumed that \code{a_hi} is already reduced modulo \code{mod.n}. NMOD_RED(r, a, mod) Macro to set $r$ to $a$ reduced modulo \code{mod.n}. The \code{mod} parameter must be a valid \code{nmod_t} structure. NMOD2_RED2(r, a_hi, a_lo, mod) Macro to set $r$ to $a$ reduced modulo \code{mod.n}, where $a$ consists of two limbs \code{(a_hi, a_lo)}. The \code{mod} parameter must be a valid \code{nmod_t} structure. No assumptions are made about \code{a_hi}. NMOD_RED3(r, a_hi, a_me, a_lo, mod) Macro to set $r$ to $a$ reduced modulo \code{mod.n}, where $a$ consists of three limbs \code{(a_hi, a_me, a_lo)}. The \code{mod} parameter must be a valid \code{nmod_t} structure. It is assumed that \code{a_hi} is already reduced modulo \code{mod.n}. NMOD_ADDMUL(r, a, b, mod) Macro to set $r$ to $r + ab$ reduced modulo \code{mod.n}. The \code{mod} parameter must be a valid \code{nmod_t} structure. It is assumed that $r$, $a$, $b$ are already reduced modulo \code{mod.n}. mp_limb_t _nmod_add(mp_limb_t a, mp_limb_t b, nmod_t mod) Returns $a + b$ modulo \code{mod.n}. It is assumed that \code{mod} is no more than \code{FLINT_BITS - 1} bits. It is assumed that $a$ and $b$ are already reduced modulo \code{mod.n}. mp_limb_t nmod_add(mp_limb_t a, mp_limb_t b, nmod_t mod) Returns $a + b$ modulo \code{mod.n}. No assumptions are made about \code{mod.n}. It is assumed that $a$ and $b$ are already reduced modulo \code{mod.n}. mp_limb_t _nmod_sub(mp_limb_t a, mp_limb_t b, nmod_t mod) Returns $a - b$ modulo \code{mod.n}. It is assumed that \code{mod} is no more than \code{FLINT_BITS - 1} bits. It is assumed that $a$ and $b$ are already reduced modulo \code{mod.n}. mp_limb_t nmod_sub(mp_limb_t a, mp_limb_t b, nmod_t mod) Returns $a - b$ modulo \code{mod.n}. No assumptions are made about \code{mod.n}. It is assumed that $a$ and $b$ are already reduced modulo \code{mod.n}. mp_limb_t nmod_neg(mp_limb_t a, nmod_t mod) Returns $-a$ modulo \code{mod.n}. It is assumed that $a$ is already reduced modulo \code{mod.n}, but no assumptions are made about the latter. mp_limb_t nmod_mul(mp_limb_t a, mp_limb_t b, nmod_t mod) Returns $ab$ modulo \code{mod.n}. No assumptions are made about \code{mod.n}. It is assumed that $a$ and $b$ are already reduced modulo \code{mod.n}. mp_limb_t nmod_inv(mp_limb_t a, nmod_t mod) Returns $a^{-1}$ modulo \code{mod.n}. The inverse is assumed to exist. mp_limb_t nmod_div(mp_limb_t a, mp_limb_t b, nmod_t mod) Returns $a^{-1}$ modulo \code{mod.n}. The inverse of $b$ is assumed to exist. It is assumed that $a$ is already reduced modulo \code{mod.n}. mp_limb_t nmod_pow_ui(mp_limb_t a, ulong e, nmod_t mod) Returns $a^e$ modulo \code{mod.n}. No assumptions are made about \code{mod.n}. It is assumed that $a$ is already reduced modulo \code{mod.n}. ******************************************************************************* Random functions ******************************************************************************* void _nmod_vec_randtest(mp_ptr vec, flint_rand_t state, slong len, nmod_t mod) Sets \code{vec} to a random vector of the given length with entries reduced modulo \code{mod.n}. ******************************************************************************* Basic manipulation and comparison ******************************************************************************* void _nmod_vec_set(mp_ptr res, mp_srcptr vec, slong len) Copies \code{len} entries from the vector \code{vec} to \code{res}. void _nmod_vec_zero(mp_ptr vec, slong len) Zeros the given vector of the given length. void _nmod_vec_swap(mp_ptr a, mp_ptr b, slong length) Swaps the vectors \code{a} and \code{b} of length $n$ by actually swapping the entries. void _nmod_vec_reduce(mp_ptr res, mp_srcptr vec, slong len, nmod_t mod) Reduces the entries of \code{(vec, len)} modulo \code{mod.n} and set \code{res} to the result. mp_bitcnt_t _nmod_vec_max_bits(mp_srcptr vec, slong len) Returns the maximum number of bits of any entry in the vector. int _nmod_vec_equal(mp_srcptr vec, mp_srcptr vec2, slong len) Returns~$1$ if \code{(vec, len)} is equal to \code{(vec2, len)}, otherwise returns~$0$. ******************************************************************************* Arithmetic operations ******************************************************************************* void _nmod_vec_add(mp_ptr res, mp_srcptr vec1, mp_srcptr vec2, slong len, nmod_t mod) Sets \code{(res, len)} to the sum of \code{(vec1, len)} and \code{(vec2, len)}. void _nmod_vec_sub(mp_ptr res, mp_srcptr vec1, mp_srcptr vec2, slong len, nmod_t mod) Sets \code{(res, len)} to the difference of \code{(vec1, len)} and \code{(vec2, len)}. void _nmod_vec_neg(mp_ptr res, mp_srcptr vec, slong len, nmod_t mod) Sets \code{(res, len)} to the negation of \code{(vec, len)}. void _nmod_vec_scalar_mul_nmod(mp_ptr res, mp_srcptr vec, slong len, mp_limb_t c, nmod_t mod) Sets \code{(res, len)} to \code{(vec, len)} multiplied by $c$. void _nmod_vec_scalar_addmul_nmod(mp_ptr res, mp_srcptr vec, slong len, mp_limb_t c, nmod_t mod) Adds \code{(vec, len)} times $c$ to the vector \code{(res, len)}. ******************************************************************************* Dot products ******************************************************************************* int _nmod_vec_dot_bound_limbs(slong len, nmod_t mod) Returns the number of limbs (0, 1, 2 or 3) needed to represent the unreduced dot product of two vectors of length \code{len} having entries modulo \code{mod.n}, assuming that \code{len} is nonnegative and that \code{mod.n} is nonzero. The computed bound is tight. In other words, this function returns the precise limb size of \code{len} times \code{(mod.n - 1) ^ 2}. macro NMOD_VEC_DOT(res, i, len, expr1, expr2, mod, nlimbs) Effectively performs the computation \begin{verbatim} res = 0; for (i = 0; i < len; i++) res += (expr1) * (expr2); \end{verbatim} but with the arithmetic performed modulo \code{mod}. The \code{nlimbs} parameter should be 0, 1, 2 or 3, specifying the number of limbs needed to represent the unreduced result. mp_limb_t _nmod_vec_dot(mp_srcptr vec1, mp_srcptr vec2, slong len, nmod_t mod, int nlimbs) Returns the dot product of (\code{vec1}, \code{len}) and (\code{vec2}, \code{len}). The \code{nlimbs} parameter should be 0, 1, 2 or 3, specifying the number of limbs needed to represent the unreduced result. mp_limb_t _nmod_vec_dot_ptr(mp_srcptr vec1, const mp_ptr * vec2, slong offset, slong len, nmod_t mod, int nlimbs) Returns the dot product of (\code{vec1}, \code{len}) and the values at \code{vec2[i][offset]}. The \code{nlimbs} parameter should be 0, 1, 2 or 3, specifying the number of limbs needed to represent the unreduced result.