/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2010 Sebastian Pancratz ******************************************************************************/ #include #include #include "flint.h" #include "fmpz.h" #include "fmpz_vec.h" #include "fmpz_poly.h" #define FLINT_DIV_DIVCONQUER_CUTOFF 16 void _fmpz_poly_div_divconquer_recursive(fmpz * Q, fmpz * temp, const fmpz * A, const fmpz * B, slong lenB) { if (lenB <= FLINT_DIV_DIVCONQUER_CUTOFF) { _fmpz_poly_div_basecase(Q, temp, A, 2 * lenB - 1, B, lenB); } else { const slong n2 = lenB / 2; const slong n1 = lenB - n2; fmpz * q0 = Q; fmpz * q1 = Q + n2; /* t is a vector of length lenB - 1, h points to the top n2 coeffs of t; r1 is vector of length lenB >= 2 n1 - 1 */ fmpz * t = temp; fmpz * h = temp + (n1 - 1); fmpz * r1 = temp + (lenB - 1); /* Set {q1, n1}, {r1, 2 n1 - 1} to the quotient and remainder of {A + 2 n2, 2 n1 - 1} divided by {B + n2, n1} */ _fmpz_poly_divremlow_divconquer_recursive(q1, r1, A + 2 * n2, B + n2, n1); _fmpz_vec_sub(r1, A + 2 * n2, r1, n1 - 1); /* Set the top n2 coeffs of t to the top n2 coeffs of the product of {q1, n1} and {B, n2}; the bottom n1 - 1 coeffs may be arbitrary For sufficiently large polynomials, computing the full product using Kronecker segmentation is faster than computing the opposite short product via Karatsuba */ _fmpz_poly_mul_KS(t, q1, n1, B, n2); /* If lenB is odd, set {h, n2} to {r1, n2} - {h, n2}, otherwise, to {A + lenB - 1, 1} + {x * r1, n2} - {h, n2} */ if (lenB & WORD(1)) { _fmpz_vec_sub(h, r1, h, n2); } else { _fmpz_vec_sub(h + 1, r1, h + 1, n2 - 1); fmpz_neg(h, h); fmpz_add(h, h, A + lenB - 1); } /* Set t to h shifted to the right by n2 - 1, and set q0 to the quotient of {t, 2 n2 - 1} and {B + n1, n2} Note the bottom n2 - 1 coefficients of t are irrelevant */ t += (lenB & WORD(1)); _fmpz_poly_div_divconquer_recursive(q0, temp + lenB, t, B + n1, n2); } }