/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2012 Sebastian Pancratz ******************************************************************************/ #include "qadic.h" /* Computes the characteristic polynomial of the $n \times n$ matrix $M$ modulo \code{pN} using a division-free algorithm in $O(n^4)$ ring operations. Only returns the determinant. Assumes that $n$ is at least $2$. */ static void _fmpz_mod_mat_det(fmpz_t rop, const fmpz *M, slong n, const fmpz_t pN) { fmpz *F; fmpz *a; fmpz *A; fmpz_t s; slong t, i, j, p, k; F = _fmpz_vec_init(n); a = _fmpz_vec_init((n-1) * n); A = _fmpz_vec_init(n); fmpz_init(s); fmpz_neg(F + 0, M + 0*n + 0); for (t = 1; t < n; t++) { for (i = 0; i <= t; i++) fmpz_set(a + 0*n + i, M + i*n + t); fmpz_set(A + 0, M + t*n + t); for (p = 1; p < t; p++) { for (i = 0; i <= t; i++) { fmpz_zero(s); for (j = 0; j <= t; j++) fmpz_addmul(s, M + i*n + j, a + (p-1)*n + j); fmpz_mod(a + p*n + i, s, pN); } fmpz_set(A + p, a + p*n + t); } fmpz_zero(s); for (j = 0; j <= t; j++) fmpz_addmul(s, M + t*n + j, a + (t-1)*n + j); fmpz_mod(A + t, s, pN); for (p = 0; p <= t; p++) { fmpz_sub(F + p, F + p, A + p); for (k = 0; k < p; k++) fmpz_submul(F + p, A + k, F + (p-k-1)); fmpz_mod(F + p, F + p, pN); } } /* Now [F{n-1}, F{n-2}, ..., F{0}, 1] is the characteristic polynomial of the matrix M. */ if (n % WORD(2) == 0) { fmpz_set(rop, F + (n-1)); } else { fmpz_neg(rop, F + (n-1)); fmpz_mod(rop, rop, pN); } _fmpz_vec_clear(F, n); _fmpz_vec_clear(a, (n-1)*n); _fmpz_vec_clear(A, n); fmpz_clear(s); } void _qadic_norm_resultant(fmpz_t rop, const fmpz *op, slong len, const fmpz *a, const slong *j, slong lena, const fmpz_t p, slong N) { const slong d = j[lena - 1]; fmpz_t pN; fmpz_init(pN); fmpz_pow_ui(pN, p, N); if (len == 1) { fmpz_powm_ui(rop, op + 0, d, pN); } else /* len >= 2 */ { { const slong n = d + len - 1; slong i, k; fmpz *M; M = flint_calloc(n * n, sizeof(fmpz)); for (k = 0; k < len-1; k++) { for (i = 0; i < lena; i++) { M[k * n + k + (d - j[i])] = a[i]; } } for (k = 0; k < d; k++) { for (i = 0; i < len; i++) { M[(len-1 + k) * n + k + (len-1 - i)] = op[i]; } } _fmpz_mod_mat_det(rop, M, n, pN); flint_free(M); } /* XXX: This part of the code is currently untested as the Conway polynomials used for the extension Qq/Qp are monic. */ if (!fmpz_is_one(a + (lena - 1))) { fmpz_t f; fmpz_init(f); fmpz_powm_ui(f, a + (lena - 1), len - 1, pN); _padic_inv(f, f, p, N); fmpz_mul(rop, f, rop); fmpz_mod(rop, rop, pN); fmpz_clear(f); } } fmpz_clear(pN); } void qadic_norm_resultant(padic_t rop, const qadic_t op, const qadic_ctx_t ctx) { const slong N = padic_prec(rop); const slong d = qadic_ctx_degree(ctx); /* N(p^v u) = p^{dv} N(u) */ if (qadic_is_zero(op) || d * op->val >= N) { padic_zero(rop); } else { _qadic_norm_resultant(padic_unit(rop), op->coeffs, op->length, ctx->a, ctx->j, ctx->len, (&ctx->pctx)->p, N - d * op->val); padic_val(rop) = d * op->val; } }