/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2011 William Hart Copyright (C) 2011 Sebastian Pancratz ******************************************************************************/ #include #include #include "flint.h" #include "nmod_vec.h" #include "nmod_poly.h" #include "nmod_poly_mat.h" #include "mpn_extras.h" /* We define a whole bunch of macros here which essentially provide the nmod_poly functionality as far as the setting of coefficient data and lengths is concerned, but which do not do any separate memory allocation. None of these macros support aliasing. */ #define __set(B, lenB, A, lenA) \ do { \ _nmod_vec_set((B), (A), (lenA)); \ (lenB) = (lenA); \ } while (0) #define __add(C, lenC, A, lenA, B, lenB) \ do { \ _nmod_poly_add((C), (A), (lenA), (B), (lenB), mod); \ (lenC) = FLINT_MAX((lenA), (lenB)); \ MPN_NORM((C), (lenC)); \ } while (0) #define __sub(C, lenC, A, lenA, B, lenB) \ do { \ _nmod_poly_sub((C), (A), (lenA), (B), (lenB), mod); \ (lenC) = FLINT_MAX((lenA), (lenB)); \ MPN_NORM((C), (lenC)); \ } while (0) #define __mul(C, lenC, A, lenA, B, lenB) \ do { \ if ((lenA) != 0 && (lenB) != 0) \ { \ if ((lenA) >= (lenB)) \ _nmod_poly_mul((C), (A), (lenA), (B), (lenB), mod); \ else \ _nmod_poly_mul((C), (B), (lenB), (A), (lenA), mod); \ (lenC) = (lenA) + (lenB) - 1; \ } \ else \ { \ (lenC) = 0; \ } \ } while (0) #define __divrem(Q, lenQ, R, lenR, A, lenA, B, lenB) \ do { \ if ((lenA) >= (lenB)) \ { \ _nmod_poly_divrem((Q), (R), (A), (lenA), (B), (lenB), mod); \ (lenQ) = (lenA) - (lenB) + 1; \ (lenR) = (lenB) - 1; \ MPN_NORM((R), (lenR)); \ } \ else \ { \ _nmod_vec_set((R), (A), (lenA)); \ (lenQ) = 0; \ (lenR) = (lenA); \ } \ } while (0) #define __div(Q, lenQ, A, lenA, B, lenB) \ do { \ if ((lenA) >= (lenB)) \ { \ _nmod_poly_div((Q), (A), (lenA), (B), (lenB), mod); \ (lenQ) = (lenA) - (lenB) + 1; \ } \ else \ { \ (lenQ) = 0; \ } \ } while (0) slong _nmod_poly_xgcd_hgcd(mp_ptr G, mp_ptr S, mp_ptr T, mp_srcptr A, slong lenA, mp_srcptr B, slong lenB, nmod_t mod) { const slong cutoff = FLINT_BIT_COUNT(mod.n) <= 8 ? NMOD_POLY_SMALL_GCD_CUTOFF : NMOD_POLY_GCD_CUTOFF; slong lenG, lenS, lenT; if (lenB == 1) { G[0] = B[0]; T[0] = 1; lenG = 1; lenS = 0; lenT = 1; } else { mp_ptr q = _nmod_vec_init(lenA + lenB); mp_ptr r = q + lenA; slong lenq, lenr; __divrem(q, lenq, r, lenr, A, lenA, B, lenB); if (lenr == 0) { __set(G, lenG, B, lenB); T[0] = 1; lenS = 0; lenT = 1; } else { mp_ptr h, j, v, w, R[4], X; slong lenh, lenj, lenv, lenw, lenR[4]; int sgnR; lenh = lenj = lenB; lenv = lenw = lenA + lenB - 2; lenR[0] = lenR[1] = lenR[2] = lenR[3] = (lenB + 1) / 2; X = _nmod_vec_init(2 * lenh + 2 * lenv + 4 * lenR[0]); h = X; j = h + lenh; v = j + lenj; w = v + lenv; R[0] = w + lenw; R[1] = R[0] + lenR[0]; R[2] = R[1] + lenR[1]; R[3] = R[2] + lenR[2]; sgnR = _nmod_poly_hgcd(R, lenR, h, &lenh, j, &lenj, B, lenB, r, lenr, mod); if (sgnR > 0) { _nmod_vec_neg(S, R[1], lenR[1], mod); _nmod_vec_set(T, R[0], lenR[0]); } else { _nmod_vec_set(S, R[1], lenR[1]); _nmod_vec_neg(T, R[0], lenR[0], mod); } lenS = lenR[1]; lenT = lenR[0]; while (lenj != 0) { __divrem(q, lenq, r, lenr, h, lenh, j, lenj); __mul(v, lenv, q, lenq, T, lenT); { slong l; _nmod_vec_swap(S, T, FLINT_MAX(lenS, lenT)); l = lenS; lenS = lenT; lenT = l; } __sub(T, lenT, T, lenT, v, lenv); if (lenr == 0) { __set(G, lenG, j, lenj); goto cofactor; } if (lenj < cutoff) { mp_ptr u0 = R[0], u1 = R[1]; slong lenu0 = lenr - 1, lenu1 = lenj - 1; lenG = _nmod_poly_xgcd_euclidean(G, u0, u1, j, lenj, r, lenr, mod); MPN_NORM(u0, lenu0); MPN_NORM(u1, lenu1); __mul(v, lenv, S, lenS, u0, lenu0); __mul(w, lenw, T, lenT, u1, lenu1); __add(S, lenS, v, lenv, w, lenw); goto cofactor; } sgnR = _nmod_poly_hgcd(R, lenR, h, &lenh, j, &lenj, j,lenj, r, lenr, mod); __mul(v, lenv, R[1], lenR[1], T, lenT); __mul(w, lenw, R[2], lenR[2], S, lenS); __mul(q, lenq, S, lenS, R[3], lenR[3]); if (sgnR > 0) __sub(S, lenS, q, lenq, v, lenv); else __sub(S, lenS, v, lenv, q, lenq); __mul(q, lenq, T, lenT, R[0], lenR[0]); if (sgnR > WORD(0)) __sub(T, lenT, q, lenq, w, lenw); else __sub(T, lenT, w, lenw, q, lenq); } __set(G, lenG, h, lenh); cofactor: __mul(v, lenv, S, lenS, A, lenA); __sub(w, lenw, G, lenG, v, lenv); __div(T, lenT, w, lenw, B, lenB); _nmod_vec_clear(X); } _nmod_vec_clear(q); } flint_mpn_zero(S + lenS, lenB - 1 - lenS); flint_mpn_zero(T + lenT, lenA - 1 - lenT); return lenG; } void nmod_poly_xgcd_hgcd(nmod_poly_t G, nmod_poly_t S, nmod_poly_t T, const nmod_poly_t A, const nmod_poly_t B) { if (A->length < B->length) { nmod_poly_xgcd_hgcd(G, T, S, B, A); } else /* lenA >= lenB >= 0 */ { const slong lenA = A->length, lenB = B->length; mp_limb_t inv; if (lenA == 0) /* lenA = lenB = 0 */ { nmod_poly_zero(G); nmod_poly_zero(S); nmod_poly_zero(T); } else if (lenB == 0) /* lenA > lenB = 0 */ { inv = n_invmod(A->coeffs[lenA - 1], A->mod.n); nmod_poly_scalar_mul_nmod(G, A, inv); nmod_poly_zero(T); nmod_poly_set_coeff_ui(S, 0, inv); S->length = 1; } else if (lenB == 1) /* lenA >= lenB = 1 */ { nmod_poly_fit_length(T, 1); T->length = 1; T->coeffs[0] = n_invmod(B->coeffs[0], A->mod.n); nmod_poly_one(G); nmod_poly_zero(S); } else /* lenA >= lenB >= 2 */ { mp_ptr g, s, t; slong lenG; if (G == A || G == B) { g = _nmod_vec_init(FLINT_MIN(lenA, lenB)); } else { nmod_poly_fit_length(G, FLINT_MIN(lenA, lenB)); g = G->coeffs; } if (S == A || S == B) { s = _nmod_vec_init(FLINT_MAX(lenB - 1, 2)); } else { nmod_poly_fit_length(S, FLINT_MAX(lenB - 1, 2)); s = S->coeffs; } if (T == A || T == B) { t = _nmod_vec_init(FLINT_MAX(lenA - 1, 2)); } else { nmod_poly_fit_length(T, FLINT_MAX(lenA - 1, 2)); t = T->coeffs; } if (lenA >= lenB) lenG = _nmod_poly_xgcd_hgcd(g, s, t, A->coeffs, lenA, B->coeffs, lenB, A->mod); else lenG = _nmod_poly_xgcd_hgcd(g, t, s, B->coeffs, lenB, A->coeffs, lenA, A->mod); if (G == A || G == B) { flint_free(G->coeffs); G->coeffs = g; G->alloc = FLINT_MIN(lenA, lenB); } if (S == A || S == B) { flint_free(S->coeffs); S->coeffs = s; S->alloc = FLINT_MAX(lenB - 1, 2); } if (T == A || T == B) { flint_free(T->coeffs); T->coeffs = t; T->alloc = FLINT_MAX(lenA - 1, 2); } G->length = lenG; S->length = FLINT_MAX(lenB - lenG, 1); T->length = FLINT_MAX(lenA - lenG, 1); MPN_NORM(S->coeffs, S->length); MPN_NORM(T->coeffs, T->length); if (G->coeffs[lenG - 1] != 1) { inv = n_invmod(G->coeffs[lenG - 1], A->mod.n); nmod_poly_scalar_mul_nmod(G, G, inv); nmod_poly_scalar_mul_nmod(S, S, inv); nmod_poly_scalar_mul_nmod(T, T, inv); } } } } #undef __set #undef __add #undef __sub #undef __mul #undef __divrem #undef __div