/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2011 Fredrik Johansson ******************************************************************************/ #include #include "flint.h" #include "ulong_extras.h" #include "nmod_vec.h" #include "nmod_poly.h" #define NMOD_POLY_NEWTON_EXP_CUTOFF 200 /* with inverse=1 simultaneously computes g = exp(-x) to length n with inverse=0 uses g as scratch space, computing g = exp(-x) only to length (n+1)/2 */ static void _nmod_poly_exp_series_newton(mp_ptr f, mp_ptr g, mp_srcptr h, slong n, nmod_t mod, int inverse) { slong a[FLINT_BITS]; slong i, m, m2, l; mp_ptr T, U, hprime; T = _nmod_vec_init(n); U = _nmod_vec_init(n); hprime = _nmod_vec_init(n); _nmod_poly_derivative(hprime, h, n, mod); hprime[n-1] = UWORD(0); for (i = 1; (WORD(1) << i) < n; i++); a[i = 0] = n; while (n >= NMOD_POLY_NEWTON_EXP_CUTOFF) a[++i] = (n = (n + 1) / 2); /* f := exp(h) + O(x^m), g := exp(-h) + O(x^m2) */ _nmod_poly_exp_series_basecase(f, h, n, n, mod); _nmod_poly_inv_series_basecase(g, f, (n + 1) / 2, mod); for (i--; i >= 0; i--) { m = n; /* previous length */ n = a[i]; /* new length */ m2 = (m + 1) / 2; l = m - 1; /* shifted for derivative */ /* g := exp(-h) + O(x^m) */ _nmod_poly_mullow(T, f, m, g, m2, m, mod); _nmod_poly_mullow(g + m2, g, m2, T + m2, m - m2, m - m2, mod); _nmod_vec_neg(g + m2, g + m2, m - m2, mod); /* U := h' + g (f' - f h') + O(x^(n-1)) Note: should replace h' by h' mod x^(m-1) */ _nmod_vec_zero(f + m, n - m); _nmod_poly_mullow(T, f, n, hprime, n, n, mod); /* should be mulmid */ _nmod_poly_derivative(U, f, n, mod); U[n - 1] = 0; /* should skip low terms */ _nmod_vec_sub(U + l, U + l, T + l, n - l, mod); _nmod_poly_mullow(T + l, g, n - m, U + l, n - m, n - m, mod); _nmod_vec_add(U + l, hprime + l, T + l, n - m, mod); /* f := f + f * (h - int U) + O(x^n) = exp(h) + O(x^n) */ _nmod_poly_integral(U, U, n, mod); /* should skip low terms */ _nmod_vec_sub(U + m, h + m, U + m, n - m, mod); _nmod_poly_mullow(f + m, f, n - m, U + m, n - m, n - m, mod); /* g := exp(-h) + O(x^n) */ /* not needed if we only want exp(x) */ if (i == 0 && inverse) { _nmod_poly_mullow(T, f, n, g, m, n, mod); _nmod_poly_mullow(g + m, g, m, T + m, n - m, n - m, mod); _nmod_vec_neg(g + m, g + m, n - m, mod); } } _nmod_vec_clear(hprime); _nmod_vec_clear(T); _nmod_vec_clear(U); } void _nmod_poly_exp_expinv_series(mp_ptr f, mp_ptr g, mp_srcptr h, slong n, nmod_t mod) { if (n < NMOD_POLY_NEWTON_EXP_CUTOFF) { _nmod_poly_exp_series_basecase(f, h, n, n, mod); _nmod_poly_inv_series(g, f, n, mod); } else { _nmod_poly_exp_series_newton(f, g, h, n, mod, 1); } } void _nmod_poly_exp_series(mp_ptr f, mp_srcptr h, slong n, nmod_t mod) { if (n < NMOD_POLY_NEWTON_EXP_CUTOFF) { _nmod_poly_exp_series_basecase(f, h, n, n, mod); } else { mp_ptr g = _nmod_vec_init((n + 1) / 2); _nmod_poly_exp_series_newton(f, g, h, n, mod, 0); _nmod_vec_clear(g); } } void nmod_poly_exp_series(nmod_poly_t f, const nmod_poly_t h, slong n) { mp_ptr f_coeffs, h_coeffs; nmod_poly_t t1; slong hlen, k; nmod_poly_fit_length(f, n); hlen = h->length; if (hlen > 0 && h->coeffs[0] != UWORD(0)) { flint_printf("Exception (nmod_poly_exp_series). Constant term != 0.\n"); abort(); } if (n <= 1 || hlen == 0) { if (n == 0) { nmod_poly_zero(f); } else { f->coeffs[0] = UWORD(1); f->length = 1; } return; } /* Handle monomials */ for (k = 0; h->coeffs[k] == UWORD(0) && k < n - 1; k++); if (k == hlen - 1 || k == n - 1) { hlen = FLINT_MIN(hlen, n); _nmod_poly_exp_series_monomial_ui(f->coeffs, h->coeffs[hlen-1], hlen - 1, n, f->mod); f->length = n; _nmod_poly_normalise(f); return; } if (n < NMOD_POLY_NEWTON_EXP_CUTOFF) { _nmod_poly_exp_series_basecase(f->coeffs, h->coeffs, hlen, n, f->mod); f->length = n; _nmod_poly_normalise(f); return; } if (hlen < n) { h_coeffs = _nmod_vec_init(n); flint_mpn_copyi(h_coeffs, h->coeffs, hlen); flint_mpn_zero(h_coeffs + hlen, n - hlen); } else h_coeffs = h->coeffs; if (h == f && hlen >= n) { nmod_poly_init2(t1, h->mod.n, n); f_coeffs = t1->coeffs; } else { nmod_poly_fit_length(f, n); f_coeffs = f->coeffs; } _nmod_poly_exp_series(f_coeffs, h_coeffs, n, f->mod); if (h == f && hlen >= n) { nmod_poly_swap(f, t1); nmod_poly_clear(t1); } f->length = n; if (hlen < n) _nmod_vec_clear(h_coeffs); _nmod_poly_normalise(f); }