/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2010 Sebastian Pancratz ******************************************************************************/ #include #include "flint.h" #include "fmpz.h" #include "fmpz_vec.h" #include "fmpz_poly.h" void _fmpz_poly_pow_trunc(fmpz * res, const fmpz * poly, ulong e, slong n) { ulong bit = ~((~UWORD(0)) >> 1); fmpz *v = _fmpz_vec_init(n); fmpz *R, *S, *T; /* Set bits to the bitmask with a 1 one place lower than the msb of e */ while ((bit & e) == UWORD(0)) bit >>= 1; bit >>= 1; /* Trial run without any polynomial arithmetic to determine the parity of the number of swaps; then set R and S accordingly */ { unsigned int swaps = 0U; ulong bit2 = bit; if ((bit2 & e)) swaps = ~swaps; while (bit2 >>= 1) if ((bit2 & e) == UWORD(0)) swaps = ~swaps; if (swaps == 0U) { R = res; S = v; } else { R = v; S = res; } } /* We unroll the first step of the loop, referring to {poly, n} */ _fmpz_poly_sqrlow(R, poly, n, n); if ((bit & e)) { _fmpz_poly_mullow(S, R, n, poly, n, n); T = R; R = S; S = T; } while ((bit >>= 1)) { if ((bit & e)) { _fmpz_poly_sqrlow(S, R, n, n); _fmpz_poly_mullow(R, S, n, poly, n, n); } else { _fmpz_poly_sqrlow(S, R, n, n); T = R; R = S; S = T; } } _fmpz_vec_clear(v, n); } void fmpz_poly_pow_trunc(fmpz_poly_t res, const fmpz_poly_t poly, ulong e, slong n) { fmpz * copy; int clear; slong i, len; if (n == 0) { fmpz_poly_zero(res); return; } if (e == 0) { fmpz_poly_set_ui(res, 1); return; } /* Set len to the length of poly mod x^n */ len = FLINT_MIN(n, poly->length); for (--len; (len >= 0) && !poly->coeffs[len]; --len) ; ++len; if ((len < 2) | (e < 3)) { if (len == 0) fmpz_poly_zero(res); else if (len == 1) { fmpz_poly_fit_length(res, 1); fmpz_pow_ui(res->coeffs, poly->coeffs, e); _fmpz_poly_set_length(res, 1); } else if (e == 1) { if (res != poly) { fmpz_poly_fit_length(res, len); _fmpz_vec_set(res->coeffs, poly->coeffs, len); _fmpz_poly_set_length(res, len); } else fmpz_poly_truncate(res, len); } else /* e == 2 */ fmpz_poly_sqrlow(res, poly, n); return; } if (poly->length >= n) { copy = poly->coeffs; clear = 0; } else { copy = (fmpz *) flint_malloc(n * sizeof(fmpz)); for (i = 0; i < poly->length; i++) copy[i] = poly->coeffs[i]; flint_mpn_zero((mp_ptr) copy + poly->length, n - poly->length); clear = 1; } if (res != poly) { fmpz_poly_fit_length(res, n); _fmpz_poly_pow_trunc(res->coeffs, copy, e, n); } else { fmpz_poly_t t; fmpz_poly_init2(t, n); _fmpz_poly_pow_trunc(t->coeffs, copy, e, n); fmpz_poly_swap(res, t); fmpz_poly_clear(t); } _fmpz_poly_set_length(res, n); _fmpz_poly_normalise(res); if (clear) flint_free(copy); }