/*============================================================================= This file is part of FLINT. FLINT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FLINT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FLINT; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =============================================================================*/ /****************************************************************************** Copyright (C) 2011 William Hart Copyright (C) 2011 Sebastian Pancratz ******************************************************************************/ #include #include "fmpz_vec.h" #include "fmpz_mod_poly.h" slong _fmpz_mod_poly_gcd_euclidean_f(fmpz_t f, fmpz *G, const fmpz *A, slong lenA, const fmpz *B, slong lenB, const fmpz_t p) { slong lenG = 0; if (lenB == 1) { fmpz_t invB; fmpz_init(invB); fmpz_gcdinv(f, invB, B, p); if (fmpz_is_one(f)) { fmpz_one(G); lenG = 1; } fmpz_clear(invB); } else /* lenA >= lenB > 1 */ { const slong lenW = FLINT_MAX(lenA - lenB + 1, lenB) + lenA + 2 * lenB; fmpz *Q, *R1, *R2, *R3, *T, *W; slong lenR2, lenR3; W = _fmpz_vec_init(lenW); Q = W; R1 = W + FLINT_MAX(lenA - lenB + 1, lenB); R2 = R1 + lenA; R3 = R2 + lenB; _fmpz_mod_poly_divrem_f(f, Q, R1, A, lenA, B, lenB, p); if (!fmpz_is_one(f)) goto exit; lenR3 = lenB - 1; FMPZ_VEC_NORM(R1, lenR3); if (lenR3 == 0) { _fmpz_vec_set(G, B, lenB); lenG = lenB; } else { T = R3; R3 = R1; R1 = T; _fmpz_vec_set(R2, B, lenB); lenR2 = lenB; do { _fmpz_mod_poly_divrem_f(f, Q, R1, R2, lenR2, R3, lenR3, p); if (!fmpz_is_one(f)) goto exit; lenR2 = lenR3--; FMPZ_VEC_NORM(R1, lenR3); T = R2; R2 = R3; R3 = R1; R1 = T; } while (lenR3 > 0); _fmpz_vec_set(G, R2, lenR2); lenG = lenR2; } exit: _fmpz_vec_clear(W, lenW); } return lenG; } void fmpz_mod_poly_gcd_euclidean_f(fmpz_t f, fmpz_mod_poly_t G, const fmpz_mod_poly_t A, const fmpz_mod_poly_t B) { if (A->length < B->length) { fmpz_mod_poly_gcd_euclidean_f(f, G, B, A); } else /* lenA >= lenB >= 0 */ { const slong lenA = A->length, lenB = B->length; slong lenG; fmpz *g; if (lenA == 0) /* lenA = lenB = 0 */ { fmpz_mod_poly_zero(G); fmpz_one(f); } else if (lenB == 0) /* lenA > lenB = 0 */ { fmpz_t invA; fmpz_init(invA); fmpz_gcdinv(f, invA, A->coeffs + lenA - 1, &B->p); if (fmpz_is_one(f)) fmpz_mod_poly_scalar_mul_fmpz(G, A, invA); else fmpz_mod_poly_zero(G); fmpz_clear(invA); } else /* lenA >= lenB >= 1 */ { if (G == A || G == B) { g = _fmpz_vec_init(FLINT_MIN(lenA, lenB)); } else { fmpz_mod_poly_fit_length(G, FLINT_MIN(lenA, lenB)); g = G->coeffs; } lenG = _fmpz_mod_poly_gcd_euclidean_f(f, g, A->coeffs, lenA, B->coeffs, lenB, &(B->p)); if (fmpz_is_one(f)) { if (G == A || G == B) { _fmpz_vec_clear(G->coeffs, G->alloc); G->coeffs = g; G->alloc = FLINT_MIN(lenA, lenB); G->length = FLINT_MIN(lenA, lenB); } _fmpz_mod_poly_set_length(G, lenG); if (lenG == 1) fmpz_one(G->coeffs); else fmpz_mod_poly_make_monic(G, G); } else /* Factor found, ensure G is normalised */ { if (G == A || G == B) _fmpz_vec_clear(g, FLINT_MIN(lenA, lenB)); else { _fmpz_vec_zero(G->coeffs, FLINT_MIN(lenA, lenB)); _fmpz_mod_poly_set_length(G, 0); } } } } }